The change-of-variance function of M-estimators of scale under general contamination

Marc G. Gentona, Peter J. Rousseeuwb,*

a Applied Statistics Group, Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
b Department of Mathematics, University of Antwerp (ULB), Universiteitsplein 1, B-2610 Wilrijk, Belgium

Received 27 January 1994; revised 3 November 1994

Abstract

In this paper we derive the change-of-variance function of M-estimators of scale under general contamination, thereby extending the formula in Hampel et al. (1986). We say that an M-estimator is B-robust if its influence function is bounded, and we call it V-robust if its change-of-variance function is bounded from above. It is shown, for a natural class of M-estimators, that the general notion of V-robustness still implies B-robustness. Several classes of M-estimators are studied closely, as well as some typical examples and their interpretation.

Keywords: Influence function; Change-of-variance function; B-robustness; V-robustness

1. Introduction

The influence function $IF(x, S, F)$ of a statistical functional S at a distribution F is defined as the kernel of a first-order von Mises derivative:

$$\int IF(x, S, F) \, dG(x) = \frac{\partial}{\partial \varepsilon} [S((1 - \varepsilon)F + \varepsilon G)]_{\varepsilon=0}, \quad (1.1)$$

where G ranges over all distributions (including point masses). Analogously, the change-of-variance function $CVF(x, S, F)$ is defined by

$$\int CVF(x, S, F) \, dG(x) = \frac{\partial}{\partial \varepsilon} [V(S, (1 - \varepsilon)F + \varepsilon G)]_{\varepsilon=0}, \quad (1.2)$$

* Corresponding author.
where $V(S, F)$ is the asymptotic variance of S at F. The latter formula [1, p. 128] was applied to M-estimators of location, but for M-estimators of scale only distributions G with $S(G) = S(F) = 1$ were used for simplicity. In the present paper we derive the change-of-variance function for M-estimators of scale under general contaminating distributions G.

Let us recall the definition of an M-estimator of scale. Suppose we have one-dimensional observations X_1, \ldots, X_n which are independent and identically distributed according to a distribution from the parametric model $\{F_\sigma; \sigma > 0\}$, where $F_\sigma(x) = F(x/\sigma)$. An M-estimator $S_n(X_1, \ldots, X_n)$ of σ is given by

$$\sum_{i=1}^n \chi(X_i/S_n) = 0$$

and corresponds to the statistical functional S defined by

$$\int \chi(x/S(F))dF(x) = 0. \quad (1.3)$$

The influence function of S is

$$\text{IF}(u, S, F) = \frac{\chi(u/S(F))S^2(F)}{\int x\chi'(x/S(F))dF(x)}. \quad (1.4)$$

For more information, see [1]. An important summary value of the influence function is the gross-error sensitivity of S at F, defined by

$$\gamma^* = \sup_u |\text{IF}(u, S, F)|. \quad (1.5)$$

It measures the worst influence that a small amount of contamination can have on the value of the estimator. Therefore, a desirable feature is that γ^* be finite, in which case S is called B-robust (bias-robust) at F.

Under certain regularity conditions, $\sqrt{n}(S_n - \sigma)$ is asymptotically normal with asymptotic variance

$$V(S, F) = \int \text{IF}^2(u, S, F) dF(u)$$

$$= \int \chi^2(u/S(F))S^4(F) dF(u) \left(\int x\chi'(x/S(F))dF(x)\right)^2. \quad (1.6)$$

The change-of-variance function is then found by inserting (1.6) in (1.2), and the resulting expression will be given in Section 2. We then define the change-of-variance sensitivity κ^* as $+\infty$ if a delta function with positive factor occurs in the CVF, and otherwise as

$$\kappa^* = \sup_z \frac{\text{CVF}(z, S, F)}{V(S, F)}. \quad (1.7)$$

Note that large negative values of the CVF merely point to a decrease in V, indicating a better accuracy. If κ^* is finite then S is called V-robust (variance-robust) at F.
2. The change-of-variance function of M-estimators of scale

Recall that \(F_\sigma(x) = F(x/\sigma) \). We need the following regularity conditions on \(F \):

(F1) \(F \) has a twice continuously differentiable density \(f \) (with respect to the Lebesgue measure \(\lambda \)) which is symmetric around zero and satisfies \(f(x) > 0 \ \forall x \in \mathbb{R} \).

(F2) The mapping \(A = -f'/f = (-\ln f)' \) satisfies \(A'(x) > 0 \ \forall x \in \mathbb{R} \), and \(\int A' f \, d\lambda = -\int A f' \, d\lambda < \infty \).

Let us denote

\[
A(\chi) = \int \chi^2(x) \, dF(x), \quad (2.1)
\]

\[
B(\chi) = \int x\chi'(x) \, dF(x). \quad (2.2)
\]

We will assume that \(\chi \) belongs to the class \(\Psi \) of all functions satisfying the following four regularity conditions:

(R1) \(\chi \) is well-defined and continuous on \(\mathbb{R} \setminus D^{(0)}(\chi) \), where \(D^{(0)}(\chi) \) is finite. In each point of \(D^{(0)}(\chi) \) there exist finite left and right limits of \(\chi \) which are different. Also \(\chi(-x) = \chi(x) \) if \(\{ -x, x \} \subset \mathbb{R} \setminus D^{(0)}(\chi) \), and there exists \(d > 0 \) such that \(\chi(x) \leq 0 \) on \((0,d)\) and \(\chi(x) \geq 0 \) on \((d, \infty)\).

(R2) The set \(D^{(1)}(\chi) \) of points in which \(\chi \) is continuous but in which \(\chi' \) is not defined or not continuous, is finite.

(R3) \(\int \chi(x) dF(x) = 0 \) (Fisher consistency) and \(0 < A(\chi) < \infty \).

(R4) \(0 < B(\chi) = \int (xA(x) - 1)\chi(x) dF(x) < \infty \).

From (1.2) and (1.6) we obtain

\[
\text{CVF}(z, S, F) = \left(\int \chi'(x/S(F)) x \, dF(x) \right)^{-3} \left[\left(\int \chi'(x/S(F)) x \, dF(x) \right) \right. \\
\left. \times \left(-\int x^2(u/S(F)) S^4(F) \, dF(u) + \chi^2(z/S(F)) S^4(F) \right) \\
- 2IF(z, S, F) \int \chi(u/S(F)) \chi'(u/S(F))(u/S^2(F)) S^4(F) \, dF(u) \\
+ 4IF(z, S, F) \int \chi^2(u/S(F)) S^3(F) \, dF(u) \right) \\
- 2\left(\int \chi^2(u/S(F)) S^4(F) \, dF(u) \right) \\
\times \left(-\int \chi'(x/S(F)) x \, dF(x) + (\chi'(z/S(F)))z \\
- IF(z, S, F) \int \chi''(x/S(F))(x/S^2(F)) x \, dF(x) \right) \right]. \quad (2.3)
\]
Making use of (2.1), (2.2), and $S(F) = 1$ at the model distribution, (2.3) becomes
\[
CVF(z, S, F) = \frac{A(\chi)}{B^2(\chi)} \left[1 + \frac{\chi^2(z)}{A(\chi)} - 2 \frac{z\chi'(z)}{B(\chi)} + C(\chi) \frac{\chi(z)}{B(\chi)} \right],
\]
where
\[
C(\chi) = 4 - \frac{2}{A(\chi)} \int u \chi'(u) \psi(u) dF(u) + \frac{2}{B(\chi)} \int u^2 \chi''(u) dF(u).
\]

Note that (2.4) differs from the expression in [1] by the addition of the last term, the integral of which is zero when $S(G) = 1$. This distinction does not exist for location, at least in the case of odd ψ, as can be seen in [1, pp. 145–146], where
\[
\tilde{C}(\psi) = 2 \int \left(\frac{\psi''(u)}{B(\psi)} - \frac{\psi(u)\psi'(u)}{A(\psi)} \right) dF(u) = 0.
\]

From here on we will assume that $C(\chi) > 0$, which is true in all practical applications. In Section 4.2 we will derive an alternative expression for $C(\chi)$ which is easier to compute than (2.5).

3. Relation between B-robustness and V-robustness

Let us define
\[
\gamma^- = \sup_{u \in (0, d)} (-IF(u, S, F)), \quad (3.1)
\]
\[
\gamma^+ = \sup_{u \in (d, +\infty)} IF(u, S, F)). \quad (3.2)
\]

In the theorems below we will impose that $\gamma^+ \geq \gamma^-$ (and hence $\gamma^* = \gamma^+$). This is a very natural requirement for scale estimators. For instance, when discussing breakdown properties [2], notes that $\gamma^+ \geq \gamma^-$ in the more interesting cases. The opposite situation leads to implosion of the scale estimator, as well as to lower efficiency.

The first theorem shows that the concept of V-robustness is stronger than the concept of B-robustness.

Theorem 1. For all $\chi \in \Psi$ with $\gamma^+ \geq \gamma^-$ and $C(\chi) > 0$, V-robustness implies B-robustness. In fact
\[
\gamma^* \leq \frac{1}{\kappa} \left[\sqrt{V^2(S, F)C^2(\chi) + 4V(S, F)(\kappa^* - 1) - V(S, F)C(\chi)} \right].
\]

Proof. Suppose that κ^* is finite and that there exists some x_0 for which
\[
|IF(x_0, S, F)| > \frac{1}{\kappa} \left[\sqrt{V^2(S, F)C^2(\chi) + 4V(S, F)(\kappa^* - 1) - V(S, F)C(\chi)} \right].
\]
Without loss of generality, put $x_0 \notin D^{(1)}(\chi)$ and $x_0 > d$. It follows that
\[
\chi(x_0) > \frac{1}{2} \left[\sqrt{\left(\frac{A(\chi)C(\chi)}{B(\chi)} \right)^2 + 4A(\chi)\chi^{*} - 1} - \frac{A(\chi)C(\chi)}{B(\chi)} \right] = b.
\]
If $\chi'(x_0) \leq 0$ then
\[
1 + \frac{\chi^2(x_0)}{A(\chi)} - 2 \frac{x_0 \chi'(x_0)}{B(\chi)} + \frac{C(\chi)}{B(\chi)} \chi(x_0) \geq 1 + \frac{b^2}{A(\chi)} + \frac{C(\chi)}{B(\chi)} b = \chi^{*},
\]
a contradiction. Therefore, $\chi'(x_0) > 0$. Since we have $\chi(x_0) > 0$, there exists $\varepsilon > 0$ such that $\chi'(t) > 0$ for all t in $[x_0, x_0 + \varepsilon)$, so $\chi(x) > \chi(x_0)$ for all x in $(x_0, x_0 + \varepsilon]$. It follows that $\chi(x) > \chi(x_0) > b$ for all $x > x_0$, $x \notin D^{(0)}(\chi)$ because only upward jumps of χ are allowed for positive x. As $D^{(0)}(\chi) \cup D^{(1)}(\chi)$ is finite, we may assume that $[x_0, + \infty) \cap (D^{(0)}(\chi) \cup D^{(1)}(\chi))$ is empty. It holds that
\[
1 + \frac{\chi^2(x)}{A(\chi)} - 2 \frac{x \chi'(x)}{B(\chi)} + \frac{C(\chi)}{B(\chi)} \chi(x) \leq \chi^{*}.
\]
Therefore
\[
\chi^2(x) - 2x \chi'(x) \frac{A(\chi)}{B(\chi)} \leq A(\chi)(\chi^{*} - 1) - \frac{C(\chi)A(\chi)}{B(\chi)} \chi(x) \leq A(\chi)(\chi^{*} - 1) - \frac{C(\chi)A(\chi)}{B(\chi)} b \leq b^2,
\]
hence
\[
\chi^2(x) - 2x \chi'(x) \frac{A(\chi)}{B(\chi)} \leq b^2
\]
for all $x \geq x_0$. Hence
\[
\frac{\chi'(x)}{\chi^2(x) - b^2} \geq \frac{B(\chi)}{2A(\chi)} x^{-1}.
\]
Putting
\[
R(x) = \frac{1}{b} \coth^{-1} \left(\frac{\chi(x)}{b} \right)
\]
and
\[
P(x) = \frac{B(\chi)}{2A(\chi)} \ln(x),
\]
it follows that $R'(x) \geq P'(x)$ for all $x \geq x_0$. Hence $R(x) - R(x_0) \geq P(x) - P(x_0)$, and thus
\[
\coth^{-1} \left(\frac{\chi(x)}{b} \right) \leq b \left[P(x_0) - R(x_0) - \frac{B(\chi)}{2A(\chi)} \ln(x) \right].
\]
However, the left member is positive because $\chi(x) > b$ and the right member tends to $- \infty$ for $x \to \infty$, a contradiction. This proves the desired inequality. □
Theorem 2. For all $\chi \in \Psi$ with $\gamma^+ \geq \gamma^-$ and $C(\chi) \geq 0$, and χ nondecreasing for $x \geq 0$, V-robustness and B-robustness are equivalent. In fact

$$\kappa^* = 1 + \frac{(\gamma^*)^2}{V(S, F)} + C(\chi)\gamma^*.$$

Proof. One of the two inequalities follows from Theorem 1. For the other, assume that S is B-robust. Because χ is monotone, the CVF can only contain negative delta functions, which do not contribute to κ^*. For all $x \geq 0$ it holds that $\chi'(x) \geq 0$, so

$$1 + \frac{x^2(x)}{A(x)} - 2 \frac{x\chi'(x)}{B(x)} + \frac{C(\chi)}{B(x)} \chi(x) \leq 1 + \frac{(\gamma^*)^2}{V(S, F)} + C(\chi)\gamma^*.$$

Hence, S is also V-robust. \(\square\)

Theorem 3. For all $\chi \in \Psi$ with $\gamma^+ \geq \gamma^-$ and $C(\chi) \geq 0$, and χ nondecreasing for $x \geq 0$, we have

$$\kappa^* \geq 2 + C(\chi)\gamma^*.$$

Proof. We have

$$V(S, F) = \int IF^2(u, S, F) dF(u) \leq (\gamma^*)^2.$$

Using Theorem 2, it follows that

$$\kappa^* = 1 + \frac{(\gamma^*)^2}{V(S, F)} + C(\chi)\gamma^* \geq 2 + C(\chi)\gamma^*. \quad \square$$

4. **Examples**

4.1. **The L^q scale estimator**

The L^q scale estimator at F is given by

$$\chi(x) = |x|^q - \int |x|^q dF(x), \text{ with } q > 0. \quad (4.1)$$

Theorem 4. For any distribution F and any $q > 0$, the L^q scale estimator satisfies

$$C(\chi) = 2.$$

Proof. From $\chi'(x) = q|x|^{q-1} \text{sign}(x)$ we deduce the two relations

$$x\chi'(x) = q\chi(x) + B(\chi)$$
and
\[x^2 \chi''(x) = (q - 1) \chi'(x). \]

This yields
\[\int x \chi(x) \chi'(x) dF(x) = q \int \chi^2(x) dF(x) + B(\chi) \int \chi(x) dF(x) = qA(\chi), \]
\[\int x^2 \chi''(x) dF(x) = (q - 1)B(\chi). \]

Hence
\[C(\chi) = 4 - 2 \frac{A(\chi)}{A(\chi)} qA(\chi) + \frac{2}{B(\chi)} (q - 1)B(\chi) = 2. \]

Theorem 5. The \(L^q \) scale estimator is neither B-robust nor V-robust at any distribution \(F \), that is to say
\[\gamma^* = \infty \quad \text{and} \quad \kappa^* = \infty. \]

Proof. As \(\chi \) is unbounded, the estimator is not B-robust. Moreover, as the CVF behaves like \(x^{2q} \) with a positive factor when \(x \to \infty \), it is not bounded from above. \(\square \)

The maximum likelihood estimator (MLE) at \(F = \Phi \) is given by \(\chi(x) = x^2 - 1 \), obtained by putting \(q = 2 \) in (4.1). This yields
\[A(\chi) = \int \chi^2(x) d\Phi(x) = 2, \]
\[B(\chi) = \int x \chi'(x) d\Phi(x) = 2, \]
\[\int \chi(x) \chi'(x) x d\Phi(x) = 4, \]
\[\int \chi''(x) x^2 d\Phi(x) = 2. \]

Hence
\[IF(u,S,\Phi) = \frac{1}{2} (u^2 - 1) \quad \text{with} \quad \gamma^* = \infty, \]
\[CVF(z,S,\Phi) = \frac{1}{4} (z^4 - 4z^2 + 1) \quad \text{with} \quad \kappa^* = \infty. \]

Both functions are plotted in Fig. 1. We see that the maximum likelihood estimator at \(\Phi \) is neither B-robust nor V-robust. For \(q = 1 \) we obtain the mean deviation with \(\chi(x) = |x| - \sqrt{2/\pi} \) which is again neither B-robust nor V-robust.
4.2. Computation of $C(x)$ at the Gaussian model

Let us recall that

$$C(x) = 4 - \frac{2}{A(\chi)} \int x \chi(x) \chi'(x) dF(x) + \frac{2}{B(\chi)} \int x^2 \chi''(x) dF(x).$$

Theorem 6. At the Gaussian distribution $F = \Phi$ we have

$$C(x) = 1 - \frac{1}{A(\chi)} \int x^2 \chi^2(x) d\Phi(x) + \frac{2}{B(\chi)} \int (x^4 - 3x^2) \chi(x) d\Phi(x).$$

Proof. Denoting the density of Φ by ϕ we find

$$\int x \chi(x) \chi'(x) d\Phi(x) = \frac{1}{2} \int x (\chi^2(x))' \phi(x) dx$$

$$= -\frac{1}{2} \int \chi^2(x)(\phi(x) + x \phi'(x)) dx$$

$$= -\frac{1}{2} \int \chi^2(x)(1 - x^2) \phi(x) dx$$

$$= \frac{1}{2} \left(\int x^2 \chi^2(x) d\Phi(x) - A(\chi) \right)$$

(4.2)
and
\[
\int x^2 \chi''(x) d\Phi(x) = \int x^2(\chi'(x))' \phi(x) dx
\]
\[
= - \int (2x \phi(x) + x^2 \phi'(x))\chi'(x) dx
\]
\[
= - 2B(\chi) + \int x^3 \chi'(x) \phi(x) dx
\]
\[
= - 2B(\chi) - \int (x^3 \phi(x))' \chi(x) dx
\]
\[
= - 2B(\chi) + \int (x^4 - 3x^2) \chi(x) d\Phi(x).
\]

This yields
\[
C(\chi) = 4 - \frac{1}{A(\chi)} \left(\int x^2 \chi^2(x) d\Phi(x) - A(\chi) \right) + \frac{2}{B(\chi)} \left(- 2B(\chi) + \int (x^4 - 3x^2) \chi(x) d\Phi(x) \right)
\]
\[
= 1 - \frac{1}{A(\chi)} \int x^2 \chi^2(x) d\Phi(x) + \frac{2}{B(\chi)} \int (x^4 - 3x^2) \chi(x) d\Phi(x).
\]

4.3. The \(\lambda\)-th absolute deviation estimator (\(\lambda\)-MAD) at the Gaussian model

Consider the \(\lambda\)-th absolute deviation estimator (\(\lambda\)-MAD) at \(F = \Phi\) given by
\[
\chi(x) = \begin{cases}
(\lambda - 1)/\lambda & \text{if } - \Phi^{-1}(\frac{1}{2} + \frac{1}{\lambda}) < x < \Phi^{-1}(\frac{1}{2} + \frac{1}{\lambda}), \\
1 & \text{elsewhere},
\end{cases}
\]

with \(0 < \lambda < 1\). Let us now look at Fig. 2, where \(C(\chi), \gamma^*(\chi)\) and \(\kappa^*(\chi)\) are plotted as functions of \(\lambda\).

First of all, we see that \(C(\chi) > 0\) for all \(\lambda\). Secondly, the gross-error sensitivity is minimal for \(\lambda = \frac{1}{2}\), which corresponds to the usual median absolute deviation (MAD). Finally, the change-of-variance sensitivity tends to the value 2 as \(\lambda\) tends to zero. However, note that for \(\lambda < \frac{1}{2}\) we do not have the condition \(\gamma^+ \geq \gamma^-\) required by the theorems of Section 3.

Consider the special case of \(\lambda = \frac{1}{2}\), which corresponds to the usual median absolute deviation at \(F = \Phi\), given by \(\chi(x) = \text{sign}(|x| - q)\) where \(q = \Phi^{-1}(3/4)\). This yields
\[
A(\chi) = \int x^2(x) d\Phi(x) = 1,
\]
\[
B(\chi) = \int x \chi'(x) d\Phi(x) = 4q \phi(q),
\]
\[
\int x^2 \chi^2(x) d\Phi(x) = 1,
\]
\[
\int (x^4 - 3x^2) \chi(x) d\Phi(x) = 4q^3 \phi(q).
\]
Fig. 2. The values of $C(x), \gamma^*(x)$ and $\kappa^*(x)$ as a function of λ for the λ-MAD.

Therefore

$$IF(u, S, \Phi) = \frac{\text{sign}(|u| - q)}{4q\phi(q)} \quad \text{with} \quad \gamma^* = \frac{1}{4q\phi(q)} = 1.166,$$

$$CVF(z, S, \Phi) = \frac{1}{(4q\phi(q))^2} \left[2 - \frac{1}{q\phi(q)}(\delta_q(z) + \delta_{-q}(z)) + 2q^2 \frac{\text{sign}(|z| - q)}{4q\phi(q)} \right]$$

with $\kappa^* = 2 + \frac{q}{2\phi(q)} = 3.061$.

The MAD at Φ is thus both B-robust and V-robust (see Fig. 3).
4.4. The Welsch estimator at the Gaussian model

Let us consider the Welsch estimator family at $F = \Phi$ given by

$$\chi(x) = \int \exp \left(-\frac{x^2}{d} \right) d\Phi(x) - \exp \left(-\frac{x^2}{d} \right) \quad \text{with } d > 0,$$

and let us look at the graphs of $C(\chi)$, $\gamma^*(\chi)$ and $\kappa^*(\chi)$ as functions of $d > 0$ in Fig. 4.

Also here we have $C(\chi) > 0$ for all $d > 0$. Secondly, the gross-error sensitivity is minimal for $d = 0.666$ which corresponds to the case $\gamma^* = \gamma^+ - \gamma^-$. Finally, the change-of-variance sensitivity is smallest for $d = 0.190$, which corresponds to a case where $\gamma^+ < \gamma^- = \gamma^*$.

5. Conclusions

In this paper we have derived the change-of-variance function of M-estimators of scale under general contamination, in which case the additional term $V(\chi) C(\chi) IF(z)$ arises. We have seen that it is still true that V-robustness implies B-robustness. The L^q scale estimators, which have a constant $C(\chi)$, are neither B-robust nor V-robust. An alternative formula for $C(\chi)$ has been obtained, and used to analyze the λ-MAD and the Welsch estimators.
Fig. 4. The values of $C(x)$, $\gamma^*(x)$ and $\kappa^*(x)$ as a function of d for the Welsch estimator.

References

