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Technical Proofs

Lemma A.1 If Z ∼ N(µ, σ2), then for any a < 1
2σ2 and b ∈ R, we have that

E{exp(aZ2 + bZ)} =
1√

1− 2aσ2
exp

{
b2σ2 + 2bµ+ 2aµ2

2(1− 2aσ2)

}
. (A.1)

Let (Z1, Z2)
T ∼ N2(02,Σ0) with Σ0 =

(
1 ρ

ρ 1

)
. Then for any a < 1

2
and b1, b2 ∈ R, we have

E
[
exp

{a
2

(Z2
1 + Z2

2) + b1Z1 + b2Z2

}]
=

1√
(1− a)2 − ρ2a2

exp

[
(1− ρ2)

{1− a(1− ρ2)}2 − ρ2
× {1− a(1− ρ2)}(b21 + b22) + 2ρb1b2

2

]
.

(A.2)

Proof: Since Z ∼ N(µ, σ2), then

E{exp(aZ2 + bZ)} =

∫ ∞
−∞

1√
2πσ

exp

{
az2 + bz − (z − µ)2

2σ2

}
dz

=

∫ ∞
−∞

1√
2πσ

exp

{
−
(

1

2σ2
− a
)
z2 +

(
b+

µ

σ2

)
z − µ2

2σ2

}
dz

=
1√

1
σ2 − 2aσ

exp

{
− µ2

2σ2
+

(b+ µ
σ2 )2

4( 1
2σ2 − a)

}

=
1√

1− 2aσ2
exp

{
b2σ2 + 2bµ+ 2aµ2

2(1− 2aσ2)

}
.

Next, define u1 =

(
b1

b2

)
,Σ1 =

(
a 0

0 a

)
, and the vector z = (z1, z2)

T. We have that

E
[
exp

{a
2

(Z2
1 + Z2

2) + b1Z1 + b2Z2

}]
=

1

2π|Σ0|1/2

∫ ∞
−∞

∫ ∞
−∞

exp

{
−1

2
zT(Σ−10 −Σ1)z + uT

1 z

}
dz1dz2

=

∫ ∞
−∞

∫ ∞
−∞

exp

{
−1

2
zT(Σ−10 −Σ1)z + uT

1 (Σ−10 −Σ1)
−1(Σ−10 −Σ1)z−

1

2
uT
1 (Σ−10 −Σ1)

−1u1

}
dz1dz2

× 1

2π|Σ0|1/2
exp

{
1

2
uT
1 (Σ−10 −Σ1)

−1u1

}
=

1

|I−Σ1Σ0|1/2
exp

{
1

2
uT
1 (Σ−10 −Σ1)

−1u1

}
=

1√
(1− a)2 − ρ2a2

exp

[
{1− a(1− ρ2)}(b21 + b22) + 2ρb1b2

2{(1− a)2 − ρ2a2}

]
,

where the last equation follows from the facts that |I −Σ1Σ0|1/2 =
√

(1− a)2 − ρ2a2 and that



(Σ−10 −Σ1)
−1 = 1

(1−a)2−ρ2a2

(
1− a(1− ρ2) ρ

ρ 1− a(1− ρ2)

)
. �

Proof of Lemma 1: A direct application of Lemma A.1, equation (A.1), with µ = 0 and

σ2 = 1 yields that

E{T (s)} =
1

g
E

[
exp

{
gZ(s) +

h

2
Z2(s)

}]
− 1

g
E

[
exp

{
h

2
Z2(s)

}]
=

1

g
√

1− h
exp

{
g2

2(1− h)

}
− 1

g
√

1− h
=

1

g
√

1− h

[
exp

{
g2

2(1− h)

}
− 1

]
,

proving equation (5).

Using equation (A.2), we have that

E{T (s1)T (s2)} =
1

g2
E

(
exp

[
g{Z(s1) + Z(s2)}+

h

2
{Z2(s1) + Z2(s2)}

])
− 2

g2
E

(
exp

[
gZ(s1) +

h

2
{Z2(s1) + Z2(s2)}

])
+

1

g2
E

(
exp

[
h

2
{Z2(s1) + Z2(s2)}

])
=

1

g2
√

(1− h)2 − ρ2h2

(
exp

{
g2(1 + ρ)

1− h(1 + ρ)

}
− 2 exp

[
g2{1− h(1− ρ2)}
2{(1− h)2 − ρ2h2}

]
+ 1

)
,

and thus equation (6) follows. �

Proof of Theorem 1: If Z(s) is second-order stationary, then its correlation function

becomes ρZ(s1, s2) = CZ(s1 − s2), for some positive definite function CZ(d). By the expression

of CT (s1, s2) in equation (6), it is straightforward to see that CT (s1, s2) only depends on s1 − s2

and thus T (s) is also second-order stationary.

Define the covariance function of T (s) as KT (d) such that KT (s1− s2) = CT (s1, s2). By Stein

(1999, chapter 2.4), the mean-square continuity and the m-times mean-square differentiability

of the random field T (s) are equivalent to the continuity and 2m-times differentiability of KT (d)

at d = 0, respectively. Define the function

%(x) =
1

g2
√

(1− h)2 − x2h2

[
exp

{
g2(1 + x)

1− h(1 + x)

}
− 2 exp

{ 1
2
g2(1− h+ hx2)

(1− h)2 − h2x2

}
+ 1

]
.



It is easy to see that KT (d) = %{CZ(d)}+ c where c is some constant independent of d. For any

−1 ≤ x ≤ 1 and 0 ≤ h < 1/2, %(x) is a continuous and infinitely differentiable function. Hence,

KT (d) is continuous at d = 0 if and only if CZ(d) is continuous at d = 0, which implies that T (s)

is mean-square continuous if and only if Z(s) is mean-square continuous. Furthermore, the 2mth

derivative of KT (d) at d = 0, (i.e., K
(2m)
T (0)), exist if C

(2m)
Z (0) exist, which implies that T (s) is

m-times mean-square differentiable if Z(s) is m-times mean-square differentiable. �

Proof of Theorem 3 Without loss of generality, we assume that ξ = 0. Then, some

straightforward calculation yields that

Yk(s) = ωk
egkZ(s) − 1

gk
e

hk
2
Zk(s)

2

=
eg

∗
kZ

∗(s) − 1

g∗k
e

h∗k
2
Z∗
k(s)

2

= τg∗k,h∗k{Z
∗
k(s)},

where g∗k = gk/ωk, h
∗
k = hk/ω

2
k and Z∗k(s) = ωkZk(s). Under the assumption that g1ω2 = g2ω1,

h1ω
2
2 = h2ω

2
1, we have that g∗1 = g∗2 and h∗1 = h∗2. Define g0 = g∗1 = g∗2 and h0 = h∗1 = h∗2, then

Yk(s) = τg0,h0{Z∗k(s)}. (A.3)

By definition Z∗k(s) = τ−1g0,h0
{Yk(s) = ωkZk(s), the image measure of Z∗k(s), denoted as PZ,k,

induced from PY,k is stationary Gaussian with mean 0 and Matérn correlation function (17) in

Rd with a variance ω2
k, a scale parameter φk and the same smoothness parameter ν, k = 1, 2.

Let RD = {f : f(s) ∈ R, s ∈ D ⊂ Rd} be the set of real-valued functions and B(R) be the

Borel subsets of R. A cylinder set is of the form

CB1,...,Bn
s1,...,sn

= {f ∈ RD : f(s1) ∈ B1, . . . , f(sn) ∈ Bn}, (A.4)

where s1, . . . , sn ∈ RD and B1, . . . , Bn ∈ B(R). Then the cylinder σ-algebra is defined as the

σ-algebra generated by collection of cylinder sets

R = σ
{
CB1,...,Bn

s1,...,sn
: s1, . . . , sn ∈ R, B1, . . . , Bn ∈ B(R), n = 1, 2, . . .

}
(A.5)



Suppose (Ω,F,P) is a probability space and Z∗k(s) : Ω → RD is a measurable map with

respect to cylinder σ-algebra R. Then Z∗k(s) is a Gaussian random field equipped with triplet

(RD,R,PZ,k) as a probability space, k = 1, 2. Similarly, Yk(s) is a TGH random field equipped

with probability space (RD,R,PY,k), k = 1, 2.

The equation (A.3) defines a map L : RD → RD as

(Lf)(s) = τg0h0{f(s)} for any f ∈ RD. (A.6)

By above definition, when h0 > 0, τg0,h0 is a continuous strictly increasing function and hence L

is a continuous bijection. In other words, for any f ∈ RD, there exist a unique L−1f ∈ RD.

We first show that for any set A ∈ R, the image set L(A) = {Lf : f ∈ A} ∈ R. The proof is

indirect. Let S = {A : L(A) ∈ R} be the collection of sets in R whose image is also in R. The

first step is to show that S is a σ-algebra.

(i) Suppose A ∈ S, then L(A) ∈ R. For any f ∈ Ac, we must have Lf ∈ {L(A)}c because

otherwise there exists a f ∗ ∈ A such that (Lf ∗)(s) = (Lf)(s). By definition (A.6), since τg0,h0(·)

is continuous and strictly increasing from R→ R, (Lf ∗)(s) = (Lf)(s) implies that f = f ∗ ∈ A,

which contradicts the fact that f ∈ Ac. Therefore, L(Ac) ⊆ {L(A)}c. On the other hand, for

any f ∈ {L(A)}c, we must have f ∗ = (L−1f) ∈ Ac. Otherwise, if f ∗ = (L−1f) ∈ A, then

L(f ∗) = f ∈ L(A), which contradicts the fact that f ∈ {L(A)}c. Therefore, {L(A)}c ⊆ L(Ac).

We can then conclude that A ∈ S implies that L(Ac) = {L(A)}c ∈ R and hence Ac ∈ S.

(ii) Suppose A1, . . . , An is a sequence of sets in S. Then for any f ∈
⋃∞
i=1Ai, there exist an

Ai such that f ∈ Ai and thus Lf ∈ L(Ai). Hence we have that L(
⋃∞
i=1Ai) ⊆

⋃∞
i=1 L(Ai). On the

other hand, if f ∈
⋃∞
i=1 L(Ai), there exist a L(Ai) such that f ∈ L(Ai). Using the same argument

in part (i), we can show that L−1f ∈ Ai ⊆
⋃∞
i=1Ai and hence f = L(L−1f) ∈ L(

⋃∞
i=1Ai).

Hence, we have
⋃∞
i=1 L(Ai) ⊆ L(

⋃∞
i=1Ai). In summary, L(

⋃∞
i=1Ai) =

⋃∞
i=1 L(Ai) ∈ R since each

L(Ai) ∈ R, which further indicate
⋃∞
i=1Ai ∈ S. Therefore, for any sequence A1, . . . , An, · · · ∈ S,

we have
⋃∞
i=1Ai ∈ S.



Combing part (i) and (ii), we conclude that the collection of sets S is a σ-algebra. The next

step is to show that S contains all cylinder sets defined in (A.4). By definition, let f ∗ = Lf ∈ RD,

by continuity and monotonicity of function τg0,h0(·), we have that

L
(
CB1,...,Bn

s1,...,sn

)
= {Lf : f ∈ RD, f(s1) ∈ B1, . . . , f(sn) ∈ Bn}

= {f ∗ ∈ RD : f ∗(s1) ∈ τg0,h0(B1), . . . , f
∗(sn) ∈ τg0,h0(Bn)},

where s1, . . . , sn ∈ RD and B1, . . . , Bn ∈ B(R). By proposition C.1 in Burk (1998), page 273,

since τg0,h0(·) is a strictly increasing mapping of R onto R, τg0,h0(Bi)’s are all Borel sets as well.

Hence L
(
CB1,...,Bn

s1,...,sn

)
is a cylinder set by definition. By definition, R is generated by all cylinder

sets, we must have L
(
CB1,...,Bn

s1,...,sn

)
∈ R. In other words, any cylinder set CB1,...,Bn

s1,...,sn
∈ S.

Since by definition, R is the smallest σ-algebra contains all cylinder sets and we have shown

that S is a σ-algebra contains all cylinder sets, it follows that R ⊆ S. Therefore, for any A ∈ R,

we have L(A) ∈ R. Following exactly the same arguments, we can show that for any A ∈ R, we

also have L−1(A) ∈ R.

Finally, recall that Z∗k(s) is a Gaussian random field equipped with a probability space

(RD,R,PZ,k) and Yk(s) is a TGH random field equipped with triplet (RD,R,PY,k), k = 1, 2.

And the map defined in (A.6) connects Zk(s) to Yk(s). Suppose that for any A ∈ R such

that PY,1(A) = 0, since we have shown that L−1(A) ∈ R, PZ,1{L−1(A)} is well defined and

using the property of bijection (A.6) we have that PZ,1{L−1(A)} = PY,1(A) = 0. Using Theo-

rem 2 of Zhang (2004), when d = 1, 2, 3, if ω2
1/φ

2ν
1 = ω2

2/φ
2ν
2 , we have that PZ,1 ≡ PZ,2. Hence

PY,2(A) = PZ,2{L−1(A)} = PZ,1{L−1(A)} = 0. Therefore, PY,2(A) = 0 for any A ∈ R such

that PY,1(A) = 0. In other words, PY,2(A) � PY,1(A). Applying exactly the same argument,

we can show that PY,1(A) � PY,2(A). Therefore, under conditions of Theorem 3, we have that

PY,1(A) ≡ PY,2(A), which completes the proof. �

Proof of Lemma 3: Lemma 3 follows from the fact that τg,h(z) is a monotone transforma-

tion when h ≥ 0 and from the conditional distribution of a multivariate Gaussian random vector.



�

Proof of Theorem 4: The conditional distribution (11) follows directly from Lemma 3. For

equation (12), notice that µ̃ is the median of the distribution GH1(µ̃, σ̃
2, g, h) since the function

τg,h(z) is a monotone function of z when h ≥ 0. Therefore, by the form of model (4), we have

med{Y (s0)|Dn} = ξ + X(s0)
Tβ + ωτg,h(µ̃).

Hence, equation (12) is proven. For equation (13), by using equation (A.1) in Lemma A.1

repeatedly, some straightforward algebra yield that

E{T (s0)|Dn} =
1

g
√

1− hσ̃2
exp

{
hµ̃2

2(1− hσ̃2)

}[
exp

{
g2σ̃2 + 2gµ̃

2(1− hσ̃2)

}
− 1

]
,

and hence equation (14) follows. �

Lemma A.2 If Z ∼ N(µ, σ2), then for any a < 1
2σ2 and b ∈ R, we have that

∫ z0

−∞
exp{aZ2 + bZ}fZ(z) dz = E

{
exp(aZ2 + bZ)

}
= Φ

{√
1− 2aσ2

σ

(
z0 −

µ+ bσ2

1− 2aσ2

)}
,(A.7)

E{Φ(Z)} =

∫ ∞
−∞

Φ(z)fZ(z) dz = Φ

(
µ√

1 + σ2

)
, (A.8)

where z0 is a fixed number, fZ(z) is the density function of Z ∼ N(µ, σ2) and Φ(·) is the

cumulative distribution function of the standard normal distribution.



Proof: Straightforward algebra yields that∫ z0

−∞
exp{aZ2 + bZ}fZ(z) dz

=

∫ z0

−∞

1√
2πσ

exp

{
az2 + bz − (z − µ)2

2σ2

}
dz

=

∫ z0

−∞

1√
2πσ

exp

{
−
(

1

2σ2
− a
)
z2 +

(
b+

µ

σ2

)
z − µ2

2σ2

}
dz

=
1√

1
σ2 − 2aσ

exp

{
− µ2

2σ2
+

(b+ µ
σ2 )2

4( 1
2σ2 − a)

}
Φ

{√
1

2σ2
− a

(
z0 −

µ+ bσ2

1− 2aσ2

)}

=
1√

1− 2aσ2
exp

{
b2σ2 + 2bµ+ 2aµ2

2(1− 2aσ2)

}
Φ

{√
1− 2aσ2

2σ2

(
z0 −

µ+ bσ2

1− 2aσ2

)}

Thus equation (A.7) is proved. The equation (A.8) follows readily from Lemma 2.1 in Arellano-

Valle and Genton (2005). �

Proof of Lemma 4: Using the representation of CRPS in (14), we have that

CRPS{Fs0 , y(s0)} = E(|Y − y(s0)|)−
1

2
E(|Y − Y ∗|) = ω

{
E(|T − t0|)−

1

2
E(|T − T ∗|)

}
,

where T = Y−ξ−x(s0)Tβ
ω

, T ∗ = Y ∗−ξ−x(s0)Tβ
ω

, and, t0 = y(s0)−ξ−x(s0)Tβ
ω

. By Theorem 3, we can see

that T and T ∗ are independent variables with GH1(µ̃, σ̃
2, g, h) distribution, which means that

Z̃ = τ−1g,h(T ) and Z̃∗ = τ−1g,h(T ∗) are independent random variables following N(µ̃, σ̃2) distribution.

Let fZ̃(z) and fZ̃∗(z) be their density functions, we have

E(|T − t0|) =

∫ z0

−∞
{t0 − τg,h(z)}fZ̃(z)dz +

∫ ∞
z0

{τg,h(z)− t0}fZ̃(z)dz

= t0

{
2Φ

(
z0 − µ̃
σ̃

)
− 1

}
+ E{τg,h(Z)} − 2

∫ z0

−∞
τg,h(z)fZ̃(z)dz,



where z0 = τ−1g,h(t0). By equation (A.7) in Lemma A.2, we have that∫ z0

−∞
τg,h(z)fZ̃(z)dz =

1

g

∫ z0

−∞
exp

(
h

2
z2 + gz

)
fZ̃(z)dz − 1

g

∫ z0

−∞
exp

(
h

2
z2
)
fZ̃(z)dz

=
1

g
E

{
exp

(
h

2
Z̃2 + gZ̃

)}
Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃+ gσ̃2

1− hσ̃2

)}
− 1

g
E

{
exp

(
h

2
Z̃2

)}
Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃

1− hσ̃2

)}
,

which yields that

E(|T − t0|) = t0

{
2Φ

(
z0 − µ̃
σ̃

)
− 1

}
+

1

g
E

{
exp

(
h

2
Z̃2

)}[
2Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃

1− hσ̃2

)}
− 1

]
−1

g
E

{
exp

(
h

2
Z̃2 + gZ̃

)}[
2Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃+ gσ̃2

1− hσ̃2

)}
− 1

]
. (A.9)

Note that E(|T − T ∗|) = ET ∗
{

ET

(
|T − T ∗|

∣∣T ∗)}, where ET and ET ∗ represent taking expecta-

tion with respect to T and T ∗, respectively. The conditional expectation ET

(
|T − T ∗|

∣∣T ∗) takes

the same form as equation (A.9) by replacing t0 and z0 with T ∗ and Z̃∗, respectively. Therefore, to

find E(|T−T ∗|), we need to find four quantities: E
{
T ∗Φ

(
Z̃∗−µ̃
σ̃

)}
,E(T ∗),E

[
Φ
{√

1−hσ̃2

σ̃

(
Z̃∗ − µ̃+gσ̃2

1−hσ̃2

)}]
,

and E
[
Φ
{√

1−hσ̃2

σ̃

(
Z̃∗ − µ̃

1−hσ̃2

)}]
. We find them one by one as follows:

E

{
T ∗Φ

(
Z̃∗ − µ̃
σ̃

)}
=

1

g

∫ ∞
−∞

{
exp

(
gz +

h

2
z2
)
− exp

(
h

2
z2
)}

Φ

(
z − µ̃
σ̃

)
fZ̃∗(z)dz

=
1

g
√

2π

∫ ∞
−∞

exp

{
−1− hσ̃2

2
u2 + (g + hµ̃)σ̃u+

h

2
µ̃2 + µ̃g

}
Φ(u)du

− 1

g
√

2π

∫ ∞
−∞

exp

(
−1− hσ̃2

2
u2 + hµ̃σ̃u+

h

2
µ̃2

)
Φ(u)du

=
1

g
√

1− hσ̃2
exp

{
g2σ̃2 + 2µ̃g + hµ̃2

2(1− hσ̃2)

}
Φ

{
(hµ̃+ g)σ̃√

2− 3hσ̃2 + h2σ̃4

}
− 1

g
√

1− hσ̃2
exp

{
hµ̃2

2(1− hσ̃2)

}
Φ

{
hµ̃σ̃√

2− 3hσ̃2 + h2σ̃4

}
,

(A.10)

where the last equation follows from equation (A.8) in Lemma A.2. A straightforward application

of equation (A.1) in Lemma A.1 yields that

E(T ∗) =
1

g
√

1− hσ̃2
exp

{
hµ̃2

2(1− hσ̃2)

}[
exp

{
g2σ̃2 + 2gµ̃

2(1− hσ̃2)

}
− 1

]
. (A.11)



By using equation (A.8) in Lemma A.2, it is also straightforward to show that

E

[
Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃+ gσ̃2

1− hσ̃2

)}]
= Φ

{
hµ̃σ̃ + gσ̃√

2− 3hσ̃2 + h2σ̃4

}
, and (A.12)

E

[
Φ

{√
1− hσ̃2

σ̃

(
z0 −

µ̃

1− hσ̃2

)}]
= Φ

{
hµ̃σ̃√

2− 3hσ̃2 + h2σ̃4

}
. (A.13)

In addition, by equation (A.2) in Lemma A.1, we have that

E

{
exp

(
h

2
Z̃2 + gZ̃

)}
=

1√
1− hσ̃2

exp

{
g2σ̃2 + 2µ̃g + hµ̃2

2(1− hσ̃2)

}
, and (A.14)

E

{
exp

(
h

2
Z̃2

)}
=

1√
1− hσ̃2

exp

{
hµ̃2

2(1− hσ̃2)

}
. (A.15)

By combining equations (A.9)-(A.15), we have that

E(|T − T ∗|) =
2

g
√

1− hσ̃2
exp

{
hµ̃2

2(1− hσ̃2)

}[
1− 2Φ

{
hµ̃σ̃√

2− 3hσ̃2 + h2σ̃4

}]
− 2

g
√

1− hσ̃2
exp

{
g2σ̃2 + 2µ̃g + hµ̃2

2(1− hσ̃2)

}[
1− 2Φ

{
hµ̃σ̃ + gσ̃√

2− 3hσ̃2 + h2σ̃4

}]
.

(A.16)

Using equations (A.9) and (A.16), equation (16) follows from the form of CRPS{Fs0 , y(s0)}. �
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