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Technical Proofs

Lemma A.1 If Z ~ N(u,0?), then for any a < # and b € R, we have that
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Let (Zy, Zy)T ~ Ny(09,30) with Xg = ( f ) . Then for any a < % and by, by € R, we have
p
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Proof: Since Z ~ N(u,0?), then
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Next, define u; = ( bl ) 2 = ( “ ) , and the vector z = (21, 29)". We have that
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where the last equation follows from the facts that [I — £,3,|"2 = /(1 — a)? — p2a? and that
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Proof of Lemma 1: A direct application of Lemma A.1, equation (A.1), with 4 = 0 and

0% = 1 yields that
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proving equation (5).

Using equation (A.2), we have that
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and thus equation (6) follows. O

Proof of Theorem 1: If Z(s) is second-order stationary, then its correlation function
becomes pz(s1,82) = Cz(s1 — s2), for some positive definite function Cz(d). By the expression
of Cr(s1,s2) in equation (6), it is straightforward to see that C'r(sy,s2) only depends on s; — sy
and thus 7T'(s) is also second-order stationary.

Define the covariance function of 7'(s) as Kr(d) such that Kp(s; —ss2) = Cr(sy,s2). By Stein
(1999, chapter 2.4), the mean-square continuity and the m-times mean-square differentiability
of the random field T'(s) are equivalent to the continuity and 2m-times differentiability of Kr(d)

at d = 0, respectively. Define the function




It is easy to see that Kr(d) = o{Cz(d)} + ¢ where ¢ is some constant independent of d. For any
—1<z<land0<h<1/2 o(z)is a continuous and infinitely differentiable function. Hence,
Kr(d) is continuous at d = 0 if and only if C'z(d) is continuous at d = 0, which implies that 7'(s)
is mean-square continuous if and only if Z(s) is mean-square continuous. Furthermore, the 2mth
derivative of K7(d) at d = 0, (i.e., K¥™(0)), exist if C2™(0) exist, which implies that T'(s) is

m-times mean-square differentiable if Z(s) is m-times mean-square differentiable. O

Proof of Theorem 3 Without loss of generality, we assume that & = 0. Then, some

straightforward calculation yields that
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where g; = gi/wk, hi = hy/w? and Z;(s) = wipZi(s). Under the assumption that giws = gowy,

hiws = how?, we have that gf = g3 and h} = h}. Define gy = gf = g5 and hy = h} = h}, then
Yi(s) = Tgo.no{ Z5(8)}- (A.3)

By definition Z;(s) = Tg_o}ho{Yk(s) = wiZi(s), the image measure of Z;(s), denoted as Py,
induced from Py, is stationary Gaussian with mean 0 and Matérn correlation function (17) in
R? with a variance w?, a scale parameter ¢, and the same smoothness parameter v, k = 1,2.

Let RP = {f : f(s) € R,s € D C R?} be the set of real-valued functions and B(R) be the

Borel subsets of R. A cylinder set is of the form
Catraln ={f €RP: f(s1) € By,..., f(s) € Bu}, (A4)

where s1,...,s, € RP and By,...,B, € B(R). Then the cylinder o-algebra is defined as the

o-algebra generated by collection of cylinder sets

R=c{COPris, . . .5, €RBy,....B, €BR),n=12,..} (A.5)



Suppose (€, F,P) is a probability space and Z;(s) : 2 — RP is a measurable map with
respect to cylinder o-algebra SR. Then Z;(s) is a Gaussian random field equipped with triplet
(RP R, P, ) as a probability space, k = 1,2. Similarly, Y;(s) is a TGH random field equipped
with probability space (RP R, Py,), k =1,2.

The equation (A.3) defines a map L : RP — RP as

(Lf)(8) = Tgono { f(8)} for any f € RP. (A.6)

By above definition, when hgy > 0, 74, 5, is a continuous strictly increasing function and hence L
is a continuous bijection. In other words, for any f € RP, there exist a unique L=!f € RP.

We first show that for any set A € R, the image set L(A) = {Lf : f € A} € R. The proof is
indirect. Let & = {A : L(A) € R} be the collection of sets in R whose image is also in . The
first step is to show that & is a o-algebra.

(i) Suppose A € &, then L(A) € R. For any f € A°, we must have Lf € {L(A)}° because
otherwise there exists a f* € A such that (Lf*)(s) = (Lf)(s). By definition (A.6), since 7y, n, (-)
is continuous and strictly increasing from R — R, (Lf*)(s) = (Lf)(s) implies that f = f* € A,
which contradicts the fact that f € A°. Therefore, L(A°) C {L(A)}¢. On the other hand, for
any f € {L(A)}°, we must have f* = (L7'f) € A° Otherwise, if f* = (L7'f) € A, then
L(f*) = f € L(A), which contradicts the fact that f € {L(A)}¢. Therefore, {L(A)}* C L(A°).
We can then conclude that A € & implies that L(A¢) = {L(A)}° € R and hence A° € 6.

(ii) Suppose Ai,..., A, is a sequence of sets in &. Then for any f € |J;2, A;, there exist an
A; such that f € A; and thus Lf € L(A;). Hence we have that L({J;2, 4;) C U;2; L(4;). On the
other hand, if f € |J;2, L(4;), there exist a L(A;) such that f € L(A;). Using the same argument
in part (i), we can show that L™'f € A; C [J;2; A; and hence f = L(L7'f) € L(U;2, 4).
Hence, we have |J;2, L(4;) € L(U;2, 4;). In summary, L(J:°, 4;) = U=, L(A;) € R since each
L(A;) € R, which further indicate | J;-, A; € &. Therefore, for any sequence A4, ..., 4,,--- € 6,

we have |J;2, 4; € 6.



Combing part (i) and (ii), we conclude that the collection of sets & is a o-algebra. The next
step is to show that & contains all cylinder sets defined in (A.4). By definition, let f* = Lf € RP,

by continuity and monotonicity of function 7, 4, (-), we have that
L(CEuiln)y ={Lf : f €RP, f(s1) € By, ..., f(sn) € Bu}
= {f* eRP: f*(sl) € Tgo,ho(Bl)v s ,f*(Sn) € Tgo,ho(Bn)}7

where s;,...,s, € RP and By,..., B, € B(R). By proposition C.1 in Burk (1998), page 273,

since T, p,(+) is a strictly increasing mapping of R onto R, 7, 4,(B;)’s are all Borel sets as well.
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Since by definition, R is the smallest o-algebra contains all cylinder sets and we have shown
that & is a o-algebra contains all cylinder sets, it follows that R C &. Therefore, for any A € R,
we have L(A) € . Following exactly the same arguments, we can show that for any A € R, we
also have L™1(A) € R.

Finally, recall that Z;(s) is a Gaussian random field equipped with a probability space
(RP R, P;;) and Yi(s) is a TGH random field equipped with triplet (RP, R, Py;), k = 1,2.
And the map defined in (A.6) connects Zy(s) to Yi(s). Suppose that for any A € R such
that Py;(A) = 0, since we have shown that L™!'(A) € R, Pz1{L"'(A)} is well defined and
using the property of bijection (A.6) we have that Pz ;{L~'(A)} = Py;(A4) = 0. Using Theo-
rem 2 of Zhang (2004), when d = 1,2,3, if w}/¢? = wi/P3’, we have that Pz, = Pz5. Hence
Pys(A) = Pyo{L 1 (A)} = Pz1{L"'(A)} = 0. Therefore, Py,(A) = 0 for any A € R such
that Py;(A) = 0. In other words, Py2(A) < Py;(A). Applying exactly the same argument,
we can show that Py ;(A) < Py2(A). Therefore, under conditions of Theorem 3, we have that

Py 1(A) = Py2(A), which completes the proof. O

Proof of Lemma 3: Lemma 3 follows from the fact that 7,,(2) is a monotone transforma-

tion when A > 0 and from the conditional distribution of a multivariate Gaussian random vector.



Proof of Theorem 4: The conditional distribution (11) follows directly from Lemma 3. For
equation (12), notice that ji is the median of the distribution G H; (1,62, g, h) since the function

7,.1(2) 1s a monotone function of z when h > 0. Therefore, by the form of model (4), we have
med{Y (s0)|Dn} = € + X(s0) "B + Wy n ().

Hence, equation (12) is proven. For equation (13), by using equation (A.l) in Lemma A.1l

repeatedly, some straightforward algebra yield that

and hence equation (14) follows. O

Lemma A.2 If Z ~ N(u,0?), then for any a < # and b € R, we have that
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where zy 1s a fized number, fz(z) is the density function of Z ~ N(u,c?) and ®(-) is the

cumulative distribution function of the standard normal distribution.



Proof: Straightforward algebra yields that
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Thus equation (A.7) is proved. The equation (A.8) follows readily from Lemma 2.1 in Arellano-

Valle and Genton (2005). O

Proof of Lemma 4: Using the representation of CRPS in (14), we have that

CRPS{Fa(s0)} = E(Y — y(s0)) ~ 3E(Y = Y1) = {E(T = ta)) = 5E(T = 77 |,

where T = H+(SO)TB, T = w, and, tg = w By Theorem 3, we can see
that T and T* are independent variables with GH;(ji,d2, g, h) distribution, which means that

Z = T, NT)and Z* = T, 1(T*) are independent random variables following N (ji, 52) distribution.

Let f5(z) and fz.(2) be their density functions, we have
BT = to) = [ {to = moa)H (s + [ {raas) — tab (e
=t {2(1) (ZO 5_ ﬂ) _ 1} +E{r,1,(Z)} — Z/ZO Ton(2)f7(2)dz,
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where 2y = Tg_ﬁ (to). By equation (A.7) in Lemma A.2, we have that
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Note that E(|T — T*|) = Ep« {Er (| — T*||T*) }, where Er and Er- represent taking expecta-

tion with respect to T" and T™, respectively. The conditional expectation Er (|T — T T*) takes

the same form as equation (A.9) by replacing ¢y and zy with 7* and Z*, respectively. Therefore, to

find E(|T'—T"|), we need to find four quantities: E {T*d) (Z—_ﬁ> } JE(T%),E [Q) {—”;’“’2 <Z* — %) }] :

o

and E [CID {—”;}“’2 (Z* — —L) H We find them one by one as follows:
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where the last equation follows from equation (A.8) in Lemma A.2. A straightforward application

of equation (A.1) in Lemma A.1 yields that

TR Y T § Y B T



By using equation (A.8) in Lemma A.2, it is also straightforward to show that

VI—ha? i+ g5° hiié + g5
E|pd Y17 ZO_/H-Q? = ,uaj—ga — 5, and (A.12)
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In addition, by equation (A.2) in Lemma A.1, we have that
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By combining equations (A.9)-(A.15), we have that
- & } { { = H
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Using equations (A.9) and (A.16), equation (16) follows from the form of CRPS{Fy,,y(so)}. O
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