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Abstract: A robust method for multivariate regression is developed based on robust estimators of the joint
location and scatter matrix of the explanatory and response variables using the notion of data depth. The
multivariate regression estimator possesses desirable affine equivariance properties, achieves the best break-
down point of any affine equivariant estimator, and has an influence function which is bounded in both the
response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator
based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more
stable than existing methods that are constructed using subsamples of the data. The resulting multivariate
regression technique is computationally feasible, and turns out to perform better than several popular robust
multivariate regression methods when applied to various simulated data as well as a real benchmark data
set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful
notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse
setting. The Canadian Journal of Statistics 45: 164–184; 2017 © 2017 Statistical Society of Canada

Résumé: Les auteurs développent une méthode robuste de régression multivariée basée sur des estimateurs
robustes de la localisation et de la covariance conjoints pour la variable réponse et les covariables, et qui sont
fondés sur la notion de profondeur. L’estimateur de la régression multivariée s’avère affine-équivariant, offre
le meilleur point de rupture de tous les estimateurs affine-équivariants, et possède une fonction d’influence
bornée par les variables explicatives et réponse. Afin d’accroı̂tre l’efficacité de l’estimateur, les auteurs
proposent un estimateur repondéré selon une distance de Mahalanobis robuste appliquée au vecteur des
résidus. D’un point de vue pratique, leur méthode s’avère plus stable que les méthodes existantes construites
en utilisant des sous-échantillons des données. En plus d’être réalisable numériquement, la technique de
régression multivariée proposée offre une performance supérieure à plusieurs méthodes de régression multi-
variée robustes quand elle est utilisée sur un échantillon étalon réel et sur des échantillons simulés. Lorsque
la dimension des données est élevée par rapport à la taille d’échantillon, il est possible de mettre à profit
des notions de profondeur pour construire un estimateur robuste dans une situation clairsemée. La revue
canadienne de statistique 45: 164–184; 2017 © 2017 Société statistique du Canada

1. INTRODUCTION

Suppose that we have a p-dimensional predictor vector X = (X1, . . . , Xp)� and a q-dimensional
response vector Y = (Y1, . . . , Yq)� for p ≥ 1 and q ≥ 1. The multivariate regression model is

Y = α + B�X + e,

Additional supporting information may be found in the online version of this article at the publisher’s
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where B is the p × q slope matrix, α is the q-dimensional intercept vector and the error, e,
is independent and identically distributed (i.i.d.) with mean 0 and covariance matrix �e. We
denote the location and the scatter matrix of the joint variable, Z = (Y�, X�)� as μZ and �Z,
respectively. There is a corresponding partition

μZ = (μ�
Y , μ�

X )� and �Z =
[

�YY �YX

�XY �XX

]
(1)

with �YX = ��
XY. Our method is well suited for both fixed and random designs. However for

our theoretical analysis we will assume that Z has a joint multivariate probability distribution in
R

p+q.
In a regression problem, we have data zi = (y�

i , x�
i )�, where yi is the response vector and

xi is the vector of covariates for 1 ≤ i ≤ n. Let μ̂Z and �̂Z denote the estimators of μZ and �Z,
respectively. The resulting estimates of B, α, and �e are

B̂ = �̂
−1
XX�̂XY, α̂ = μ̂Y − B̂�μ̂X and �̂e = �̂YY − B̂��̂XXB̂, (2)

where �̂XX is assumed to be invertible.
The usual method of moments leads to estimators identical to those obtained using the least

squares method. However it is well-known that moment-based estimators are extremely sen-
sitive to outliers. Thus a common practice is to use robust estimators of location and scatter.
One of the popular ways to construct robust estimators for multivariate data is to use the notion
of data depth (e.g., Liu, Parelius, & Singh, 1999; Serfling, 2006). The use of depth in build-
ing such estimators is quite natural and simple because depth has a “centre outward ordering.”
In other words depth has this appealing property that it is maximized at the centre of the data
cloud, and decreases along any ray from that centre. Points that are outlying with respect to
a data cloud will be naturally down-weighted by depth. Measures based on data depth have
nice theoretical properties as well. However data depth has not been studied much in the con-
text of multivariate regression. Robustness of the regression estimate depends critically on the
robustness of the notion of depth that is used. In this article our aim is to use depth-based es-
timates to construct regression estimates, and to investigate their performance with respect to
existing estimators.

Robust estimators of location and scale for multivariate data have been studied by several
authors. Popular methods of robust multivariate regression include estimators constructed us-
ing the minimum covariance determinant (MCD) (Rousseeuw et al., 2004), multivariate least
trimmed squares (MLTS) (Agulló, Croux, & Van Aelst, 2008), S estimators (S) (Van Aelst &
Willems, 2005), τ estimator (TAU) (Garcı́a Ben, Martı́nez, & Yohai, 2006), and modified M es-
timators (MM) (Yohai, 1987; Kudraszow & Maronna, 2011). Regression depth (RD), introduced
by Rousseeuw & Hubert (1999), yields an alternative robust approach to estimate the regression
surface in a linear regression problem. This method is defined as the fit with the largest RD rel-
ative to the data. However it has a breakdown value that converges almost surely to 1/3 (which
is lower than several existing methods) for any dimension, and the response variable is assumed
to be univariate only. Moreover RD is somewhat different from other notions of data depth for
multivariate data because it assigns depth to a fitted line and not directly to the multivariate data
points.

The rest of the article is organized as follows. Section 2 describes the basic methodology of
robust regression using data depth, and states related theoretical properties of the proposed esti-
mator. The re-weighting scheme is discussed in Section 3. We perform a comparative numerical
study among several competing estimators in Section 4 to assess the efficiency and robustness of
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the proposed methods, and we analyze a benchmark data set in Section 5. The case of robust re-
gression for sparse data is developed and studied in Section 6. Section 7 contains some concluding
remarks. Proofs of the mathematical statements are given in the Appendix.

2. ROBUST REGRESSION AND DATA DEPTH

We use robust estimators of μZ and �Z constructed from depth-based estimators of location and
scatter (Zuo, Cui, & He, 2004; Zuo, Cui, & Young, 2004; Serfling, 2006), respectively, as follows:

μ̂Z =
∑n

i=1 w1{δ(zi)}zi∑n
i=1 w1{δ(zi)} and �̂Z =

∑n
i=1 w2{δ(zi)}(zi − μ̂Z)(zi − μ̂Z)�∑n

i=1 w2{δ(zi)} .

Here δ(zi) denotes the depth of zi with respect to the entire data cloud for 1 ≤ i ≤ n, and w1 and
w2 are nondecreasing, nonnegative weight functions. The two weight functions w1 and w2 may
not necessarily be the same. Consider the following weight functions:

wj(r) = exp
[−k{1 − (r/c)2j}2j

] − exp(−k)
1 − exp(−k)

I(0 < r < c) + I(c < r < 1), (3)

where I(·) denotes the indicator function, 0 < c < 1 and k > 0 for j = 1, 2. These are continuous
surrogates of the 0–1 indicator function, and the constant k controls the degree of approximation.
Following the recommendation of Zuo, Cui, & He (2004) we consider a consistent estimate of
c which is set to be the “median of the depth values,” and k is taken to be 100. The weight
functions now assign weight 1 to half of the points with larger depth, and this balances efficiency
with robustness. The other half of the points with smaller depth could be viewed as outliers, so a
lower weight is assigned. One could also consider other weight functions satisfying appropriate
properties (Zuo & Cui, 2005).

This gives us the initial set of estimators, B̂ and α̂. We next state theoretical results for the
initial depth-weighted regression (DWR) estimates B̂ and α̂. The estimators B̂ and α̂ defined in
Equation (2) are then constructed using projection depth (PD) (Zuo & Serfling, 2000), and we
call this method DWR-PD. The PD of a point x ∈ Rd with respect to a distribution function
F of X on Rd is defined as PD(x, F ) = 1/{1 + O(x, F )}, where the outlyingness O(x, F ) =
sup‖u‖=1{u�x − μ(Fu)}/σ(Fu) and Fu is the distribution function of u�X. Here μ(Fu) and σ(Fu)
are univariate location and scale functionals, respectively, corresponding to u�X. Proofs of the
results in Sections 2.1–2.4 are provided in the Appendix.

2.1. Affine Equivariance
Define TPD

n (z) to be the matrix (B̂�, α̂) based on DWR-PD, where z = (y�, x�)�.

Proposition 1 The multivariate regression estimator TPD
n (z) is regression, y-affine, and x-affine

equivariant.

Popular robust regression estimators like MCD, MLTS, MM, S, and TAU are all affine equiv-
ariant. We expect this property to hold in a multivariate regression method because it ensures
that affine transformations of the data are reflected appropriately in the corresponding estimators.
Furthermore this also helps to simplify mathematical calculations related to robustness properties
of the estimator, such as its influence function.
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2.2. Consistency

Proposition 2 Assume that the joint distribution of Z = (Y�, X�)� is centrally symmetric
about 0 and E(‖Z‖2) < ∞. Here ‖ · ‖ denotes the usual Euclidean or l2 norm. Then TPD

n (z) is
Fisher consistent, and consistent in probability for (B�, α).

Propositions 1 and 2 also hold for other depth functions which are affine invariant, that is,
δ(AZ + b) = δ(Z) for any nonsingular (p + q) × (p + q) matrix A and vector b ∈ Rp+q.

2.3. Breakdown Point
The finite sample breakdown point (BP) (Donoho & Huber, 1983) of Tn(z) at the data set Zn

is defined as the smallest fraction of observations that need to be replaced by arbitrary points to
carry Tn(z) beyond all bounds. We assume Zn to be a set of n (≥ p + q + 1) observations from
a continuous distribution F in a general position, and consider the weight functions defined in
Equation (3), that are also discussed by Zuo, Cui, & He (2004). The following result gives the
finite sample BP of Tn(z).

Proposition 3 The multivariate regression estimator TPD
n (z) based on PD with (μ, σ) = (Me-

dian, median absolute deviation [MAD]) has a BP of �(n − p − q + 1)/2	/n, where �x	 repre-
sents the largest integer less than or equal to x.

The main idea of the proof relies on the BP of the median and the MAD (Zuo & Serfling,
2000). To compare alternatives we state the BP for the existing procedures. For estimators of
location and scatter based on MCD the BP is n
γ�/n, with 
x� denoting the smallest integer
greater than or equal to x. Here γ = (n − h)/n ≤ {n − (p + q)}/(2n), and h is the size of a
subset used for estimation. The BP of the multivariate regression estimator based on MCD is
therefore n
γ�/n (Rousseeuw et al., 2004, Theorem 2, p. 300). For the estimator based on MLTS,
the BP is min(n − h + 1, h − p − q + 1)/n, (Agulló, Croux, & Van Aelst, 2008, p. 315). The
BP of the MM estimator is at least min{BP of initial estimator, (�n/2	 − kn)/n} , where kn ≥
p + q − 1 (Kudraszow & Maronna, 2011, Theorem 3). Let k(Zn) denote the maximum number of
observations lying on the same hyperplane ofRp+q. Define r = b/ρ(∞), where ρ is a nonnegative,
symmetric, and nondecreasing function on [0, c] and constant on [c, ∞) for some constant c with
b = E[ρ(·)], and assume k(Zn) < 
n − nr� holds. For S estimators the BP is min{nr, 
n − nr� −
k(Zn)}/n (Van Aelst & Willems, 2005, p. 984). A lower bound for the BP of the τ estimator
is min{(1 − η) − (h/n), η}; see Garcı́a Ben, Martı́nez, & Yohai (2006, p. 1605) for more details
concerning the constants η and h.

It is clear from all of these expressions that the BP of all the existing methods depends on
the assumed maximum proportion of contamination, and this has to be tuned appropriately. The
BP of our regression estimator, TPD

n (z) based on PD achieves the optimal asymptotic breakdown
of 50% as we have used the median of the PD values. In the case of DWR-PD trimming is done
based on the centre-outward ordering using PD, whereas the usual trimming is based on ranks.
See also the discussion in the first paragraph on p. 2234 in Zuo (2006).

2.4. Influence Function
The influence function (IF) (Hampel et al., 1986) of an estimator T(z) at a general distribution H

measures the effect of an infinitesimal contamination at a single point on T(z). We first state con-
ditions for calculating the IF. Assume that the joint distribution of Z = (Y�, X�)� is spherically
symmetric (H); without loss of generality assume that MAD(Z1) = m0 and f is the continuous
density of Z1 satisfying f (0)f (m0) > 0. Here Z1 is the first component of the vector Z.
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Proposition 4 Consider the weight functions w1 and w2 defined in Equation (3). The IFs of B̂,
α̂, and �̂e based on PD with (μ, σ) = (Median, MAD) are

IF (z; B̂, H) = t1(‖z‖)
c0

xy�

‖z‖2 ,

IF (z; α̂, H) = K0(y/‖z‖) + w1{(1 + ‖z‖)−1}y∫
w1{(1 + ‖u‖)−1} dH(u)

,

IF (z; �̂e, H) = t1(‖z‖)yy�/‖z‖2 + t2(‖z‖)Ip

c0
.

Expressions for c0, t1, t2, and K0 are given in the Appendix.

It is quite easy to derive the IFs for these estimators under elliptic symmetry by using an
affine transformation of z. The IFs based on PD can also be derived for more general continuous
distributions, but the expressions are fairly complicated. For general joint distributions Theorem
2.1 of Zuo, Cui, & He (2004) gives the IF of μ̂Z, and Theorem 3.3 of Zuo & Cui (2005) gives the
IF of �̂Z. By combining these two expressions we can obtain a version of Proposition 4 for more
general multivariate distributions.

We now state the IF of B̂ for the existing procedures and compare them with the IF of DWR-PD.
For the usual MCD estimators assuming ellipticity of the joint distribution,

IF (z; B̂, H) = −1
c

I(‖z‖2 ≤ qα)xy�,

where the constants c and qα depend on the specific elliptic distribution (Theorem 1 of Croux &
Haesbroeck, 1999). Under spherical symmetry and E(‖X‖2) < ∞, the IF for MLTS is

IF (z; B̂, H) = EH [xx�]−1 xy�

−2c2
I(‖y‖2 ≤ qα),

where c2 and qα are constants depending on the joint distribution (Agulló, Croux, & Van Aelst,
2008, p. 319). The IF for the MM estimator is

IF (z; B̂, H) = cW
[ {(y − B�x)��−1(y − B�x)}1/2

σ

]
�(y − B�x)x�EH [xx�]−1.

Here � is the covariance matrix of the residual vector. The related constants are defined in Theorem
4 of Kudraszow & Maronna (2011). Assuming the joint density to be unimodal and spherically
symmetric the IF for S estimators is

IF (z; B̂, H) = EH [xx�]−1ρ(‖y‖)
β

xy�

‖y‖ ,

where β and ρ are defined on p. 985 of Van Aelst & Willems (2005). Under appropriate conditions
the IF for the τ estimator is

IF (z; B̂, H) = c0w
∗
[ {(y − B�x)��−1(y − B�x)}1/2

k0

]
EH [xx�]−1x(y − B�x)�.

Here � is the covariance matrix of the residual vector. The related constants are identified on pp.
1606–1607 of Garcı́a Ben, Martı́nez, & Yohai (2006).
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The expressions in Proposition 4 are all bounded (see Lemma 1 in the Appendix). By the
submultiplicative property of a matrix norm we get ‖xy�‖ ≤ ‖x‖‖y�‖ ≤ ‖z‖2. This implies
that the IF of B̂ is bounded in both variables x and y for DWR-PD. The IF of the slope matrix
based on MCD is also bounded in both variables. However the IFs of the slope matrix based on
re-weighted MCD, MLTS, and the S estimator are all bounded in y but unbounded in x. This
suggests that all these methods should safeguard the procedure against “vertical outliers” and
“bad leverage” points. Moreover the expression for the IF corresponding to the first method is
derived under normality of the joint variables, whereas the expressions for the IFs of the last four
methods require the finiteness of EH [xx�]−1 and the IF function for the MM estimator remains
unbounded.

When the estimators B̂ and α̂ are constructed using spatial depth (SPD) (Vardi & Zhang,
2000; Serfling, 2002) they are referred to as DWR-SPD. The SPD of an observation x ∈ Rd

with respect to a distribution function F on Rd is defined as SPD(x, F ) = 1−∥∥EF {u(x − X)}∥∥,

where X ∼ F . Here u(·) is the multivariate sign function, defined as u(x) = ‖x‖−1x if x �= 0d ,
and u(0d) = 0d , with x ∈ Rd and 0d is the d-dimensional vector of zeros. The theoretical results
mentioned above for DWR-PD hold only partially for DWR-SPD. Note that SPD is invariant under
orthogonal transformations, and fails to be affine equivariant. The estimators based on DWR-SPD
are consistent only when Z is spherically symmetric. Fix a constant λ with 0 < λ < 1 and consider
the set {x : SPD(x, F ) < 1 − λ}. If we have an observation lying inside (respectively, outside)
this set, then it is called a λ outlier (respectively, nonoutlier). Now the masking BP of SPD is

n(1 − λ)/2�/n (Theorem 3.5 of Dang & Serfling, 2010), and the resulting BP for DWR-SPD also
depends on this trimming factor λ. An expression for the IF of SPD has been calculated and shown
to be bounded by Dang, Serfling, & Zhou (2009). Furthermore Dang, Serfling, & Zhou (2009)
stated a general result for depth-weighted location estimators and the IF has a very complicated
expression for general depth functions. By combining these two expressions one may try to obtain
a final expression for the IF of DWR-SPD. However we have not been able to derive this result,
which is still an open problem.

3. RE-WEIGHTED MULTIVARIATE REGRESSION

3.1. Re-Weighting Based on Robust Mahalanobis Distances
The use of a depth-weighted estimator invokes robustness, although the overall method loses
efficiency. For example our procedure clearly puts very low weight on the “good leverage”
points. This is the case because the point is outlying with respect to such a data cloud and
hence has a low depth value. A “bad leverage” point is a point for which both ‖x‖ and ‖e‖ have
high values; and a “vertical outlier” is a point for which ‖x‖ has a low value and ‖e‖ has a
high value.

Define the estimated residual vector as êi = yi − ŷi for all 1 ≤ i ≤ n, where ŷi = α̂ + B̂�xi.

Consider the standardized residuals �̂
−1/2
e êi, and without confusion we denote them again

by êi. Recall the expression for �̂e given in Equation (2), which is a robust estimator for
�e. For these êi good leverage points will have a small value of ‖êi‖, whereas vertical out-
liers and bad leverage points will have a large value of ‖êi‖. So the main objective is to re-
tain observations about the point 0, and seek to discard the remaining points. In other words
we calculate the Mahalanobis distances (Mahalanobis, 1936) for the residual vectors with 0
as the centre and �̂e as the scatter matrix. We then use the adaptive re-weighting scheme
of Gervini (2003, pp. 118–119) to identify outliers in the cloud of residuals. The details are
as follows.

Let di denote the Mahalanobis distances for the residual vectors êi with 0 as the centre
and �̂e as the scatter matrix for 1 ≤ i ≤ n; d(1) ≤ · · · ≤ d(n) denote their values in ascending
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Figure 1: A plot illustrating our two-step procedure. In the left panel, the black points are the observed
data with the largest depth and the dotted line represents the fitted line based on B̂ and α̂. In the right panel,
after re-weighting, we indicate the newly fitted line in bold together with those data that contribute to this

new fit based on B̂R and α̂R.

order. Define i0 = max{i : d2
(i) < χ2

q,1−α} for a fixed α (say, 0.025) and let αn =
maxi>i0{Gq(d2

(i)) − (i − 1)/n}+ with {·}+ denoting the positive part, and Gq the cumulative
distribution function of χ2

q, the chi-squared distribution with q degrees of freedom (df). Here
χ2

q,1−α represents the 1 − α quantile of the χ2
q distribution. Now the observations correspond-

ing to the largest �nαn	 distances are identified as outliers, whereas the remaining points are
labelled nonoutliers. For the observations selected as nonoutliers, we update the correspond-
ing weights to be 1. Next we do a round of weighted least squares (WLS) regression with this
“new” set of weights which gives us the final set of regression estimators, namely B̂R and α̂R.
This re-weighted estimator is affine equivariant because �̂e is an affine equivariant estimator
of �e.

To get a better understanding of how the re-weighting step works we constructed two
plots. We first generated a data set of size 48, where the regressors came from a normal dis-
tribution with mean 0 and variance 0.2, whereas the response was obtained by adding an
error term which also had a standard normal distribution with variance 0.1. We next added
a good leverage point at (1, 1) and an outlier at (0.3, −0.5), making the total sample size
50.

The panel on the left in Figure 1 shows the simulated points and the fitted line based on the
PD-weighted estimators with the 0–1 weight function; the cutoff is set to be the median of the
PD values, which ensures that the half of the points with the highest PDs are selected. The black
points are the data that have a weight equal to 1, and they contribute significantly to the regression
estimate. We see that the leverage point as well as the outlier in the data set have been omitted
because our method is based on depth. The re-weighting step rotates the line clockwise—see
the bold line in the right panel of Figure 1—and includes the good leverage point as a part of
the fit.

3.2. Practical Aspects
We consider PD together with the median and MAD as univariate robust estimators (Zuo &
Serfling, 2000). The theoretical version of PD has good robustness properties, but its computa-
tion poses an additional difficulty (Liu & Zuo, 2014). For data in Rd PD involves calculating

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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a supremum in d-dimensional space. Practically it is not possible to compute this supre-
mum exactly in arbitrary dimensions and one usually uses approximation algorithms to cal-
culate PD. We have used the R function zdepth developed by Wilcox (2012) for computing
PD. The algorithm is based on the well-known Nelder–Mead or “downhill simplex” method
(Nelder & Mead, 1965) for solving the maximization problem in the outlyingness function
O(x, F ) in Rd .

The notion of SPD eases this computational burden. SPD can be calculated exactly be-
cause it is an average of unit vectors xi/‖xi‖ constructed from the n data points. However
one loses a bit of robustness because equal weights are assigned to all those unit vec-
tors. We implement both methods in our procedure, and present a comparative study in
Section 4.

4. NUMERICAL WORK

Our numerical study is motivated by the examples considered by Agulló, Croux,
& Van Aelst (2008). We performed a study of the efficiency and robustness of
the overall procedure. We used R (R Core Team, 2015) code from the robust-
base package (Rousseeuw et al., 2015) for MCD, and the FRB package (Van Aelst
& Willems, 2013) for both S and MM. Code for MLTS/RMLTS is available at
http://www.econ.kuleuven.be/public/NDBAE06/programs/mlts/mlts.r.txt, whereas the neces-
sary functions for TAU were obtained from Prof. Victor J. Yohai. We have made our
R code available at Section 8. For the sake of comparison we also studied the per-
formance of our method based on SPD (labelled DWR-SPD). We calculated the mean
squared error (MSE) of the slope matrix B̂ by computing an average over the MSE of
each element of B̂ over the random realizations of the data. The matrix norm used here
is the usual component-wise l2 norm. In our experiments we observed occasional in-
stances of singularity (the weights became zero in the calculation of the weighted co-
variance) for S estimators; therefore, we have not reported this estimator as one of our
competitors.

The tuning parameters for MCD and MLTS were set to beα = 0.50 andγ = 0.50, respectively.
The re-weighted versions of MLTS and MCD are labelled RMLTS and RMCD, respectively. For
the TAU estimator we set N = (sample size)/2, while the constants c1, c2, and ka were chosen
based on Tables 1 and 2 of Garcı́a, Martı́nez, & Yohai (2006) to attain 95% efficiency. We did
not have to set any default parameters for the MM estimator. The FRB package uses Tukey’s
bi-weight function. In the first step (the S estimate) this function was first tuned to obtain 50% BP,
and in the second step (the M estimate) it was tuned again to ensure 95% efficiency for the normal
model.

4.1. Finite Sample Performance
In this section we report on our investigation of the finite sample performance of our estimators
and compare them with other robust multivariate regression estimators. We generated m = 500
regression data sets, each of size n = 100. For this study we considered p = q = 3 with the first
regressor accounting for the intercept term. The remaining p − 1 explanatory variables were
generated from the following distributions:

(i) The multivariate standard normal distribution;
(ii) The multivariate standard Cauchy distribution;

(iii) The multivariate uniform distribution on (−1, 1)p.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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Figure 2: Estimated MSEs of B̂ for normal (left panel) and Cauchy (right panel) distributed explanatory
variables when λ = 0.

The multivariate uniform distribution was generated using componentwise univariate uniform
distributions on the symmetric interval (−1, 1). Without loss of generality we set B = 0 in the
multivariate regression model. The response variables were generated from each of these same
three distributions.

From Table 1 it is clear that the TAU estimator yielded the best overall performance, closely
followed by the MM estimator. The re-weighted version of the SPD-based estimator, labelled
RDWR-SPD, also led to competitive performance in some scenarios when both the response and
the explanatory variables were uniformly distributed. This improved performance may be due to
the fact that SPD led to a “centre outward ordering” of observations from a uniform distribution;
see also p. 5 of Serfling (2006). Generally we also observed that the re-weighted version of
DWR-SPD was more efficient than RDWR-PD. The estimator RMLTS resulted in
smaller estimated values of MSE compared to the corresponding estimates obtained
using RMCD.

4.2. Finite Sample Robustness
To study the finite sample robustness of our proposed estimators we carried out simulations with
contaminated data sets. The parameters were chosen to be α = 1 and B = 0 as in Section 4.1. We
first simulated m = 500 data sets of size n = 100 with p = q = 3 and assumed the errors to be
Gaussian. The predictor variables were generated from Gaussian as well as Cauchy distributions.
To generate contaminated data sets, we replaced 20% of the data with new observations. The

new p − 1 explanatory variables were generated according to N(λ
√

χ2
p−1,0.99, 1.5), whereas the

new q response variables were generated from N(κ
√

χ2
q,0.99, 1.5). Here χ2

r,0.99 represents the 0.99
quantile of the chi-squared distribution with r df for r = p − 1 and q. We considered λ and κ

values from {0, 1, 2, 3, 4, 5}. If λ = 0 and κ > 0, we obtained “vertical outliers.” On the other
hand if λ > 0 and κ = 0 we obtained “good leverage” points.

From Figures 2 and 3 it is clear that both the MM and the TAU estimators are
uniformly more efficient than all other methods. For data with normal explanatory vari-
ables RDWR-PD exhibited substantial improvement over RDWR-SPD. As RMLTS led to
performance that was comparable to RDWR-PD, the former method did have an edge
in some situations. In the case when λ = 0 and the explanatory variables followed a
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Figure 3: Estimated MSEs of B̂ for normal (left panel) and Cauchy (right panel) distributed explanatory
variables when κ = 0.

Figure 4: Maximal estimated MSEs of B̂ in the contaminated data for normal (left panel) and Cauchy
(right panel) distributed explanatory variables, as a function of λ.

Cauchy distribution RMCD led to a surprisingly large estimated MSE; see the right panel
of Figure 2.

If both λ > 0 and κ > 0 we obtain “bad leverage” points. Large values of λ and κ produce
extreme outliers, whereas small values produce intermediate outliers. In Figure 4, for each value
of λ, we plot the maximal observed value of MSE for all possible values of κ, based on the
contaminated data.

In the left panel of Figure 4 we observe a lack of robustness for both the MM and TAU
estimators. The performance of RMLTS is also quite poor. Clearly both our depth-based methods
as well as RMCD led to uniformly smaller estimated values of MSE. The situation improved
when the explanatory variables had a Cauchy distribution (the right panel); the MSE decreased
considerably for both the MM and TAU estimators, but depth-based methods were clearly more
robust. In fact both RDWR-PD and RDWR-SPD yielded MSE estimates that were close to 0 for
all values of λ.
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5. DATA ANALYSIS

We analyzed a benchmark data set to illustrate the usefulness of the methods. The diagnos-
tic plots in Figure 5 show combined information on regression outliers and leverage points,
and are more useful than separately analyzing each distance (e.g., Rousseeuw et al., 2004).
Here robust distances were calculated using projection outlyingness. We plotted the robust
distance of the residuals versus the robust distance of the predictor variables. The horizontal
and vertical lines on each plot indicate the square roots of the 0.975 quantiles of χ2

p and χ2
q,

respectively.

5.1. School Data
The aim of this study conducted by Charnes, Cooper, & Rhodes (1981) was to explain the scores
observed on three tests written at 70 schools using five explanatory variables. The three test scores
were (i) the total reading score; (ii) the total mathematics score; and (iii) the Coopersmith Self-
Esteem Inventory; both the reading and the mathematics scores were measured by the Metropolitan
achievement test. The explanatory variables included the education level of the mother, measured
as the percentage of high school graduates among female parents, the highest observed occupation
rating of a family member according to a pre-established rating scale, a parental visit index
indicating the number of visits to the school site, a parent counselling index calculated from data
on time spent with the child on school-related topics such as reading together, etc., and the number
of teachers at a given site. For these data p = 5, q = 3, and n = 70.

In these data the RDWR-PD and RDWR-SPD methods performed on par with the four alterna-
tive robust estimators; all methods uniformly classified observation 59 as a “bad leverage” point;
see Table 2 and Figure 5. The MM and RMLTS estimators identified observation number 44 as
an additional “vertical outlier,” whereas RDWR-PD and RDWR-SPD highlighted observation 47.
RMCD failed to identify observation numbers 12 and 35 as outliers, whereas TAU overlooked
the latter.

To understand the relative importance of the vertical outliers we prepared pairwise plots of
the response variables for observations 12, 21, 35, 44, and 47; see Figure 6. The influence of
observations 44 and 47 is quite evident.

Table 2: Index numbers of “bad” points in the school data.

Estimation method Vertical outlier Bad leverage

RDWR-PD 12, 21, 35, 47 59

RDWR-SPD 12, 21, 35, 47 59

RMLTS 12, 21, 35, 44 59

MM 12, 21, 35, 44 59

RMCD 21, 44 59

TAU 12, 21, 44 59

6. ROBUST MULTIVARIATE REGRESSION FOR SPARSE DATA

6.1. The Re-Weighted LASSO Estimator
With the modern advances in statistical methods data that have a dimension greater than the sample
size have become quite common in practice. Moreover an interesting question in such a scenario
is the identification of an outlier. A study on data depth by Chakraborty & Chaudhuri (2014)
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Figure 5: Diagnostic plots for various robust estimation methods showing robust residuals versus robust
distances of the explanatory variables for the school data. The vertical and horizontal cutoff lines are set at

the square roots of the 0.975 quantiles of χ2
5 and χ2

3 , respectively.
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Figure 6: Pairwise plots of components of the response variable for observation numbers 12, 21, 35, 44,
and 47 in the school data.

showed that for a large class of infinite-dimensional distributions, the notion of SPD transforms
all values to the interval (0, 1); see their Theorems 6 and 7. SPD is therefore still meaningful for
data arising from a quite large class of infinite-dimensional distributions. This motivates us to
explore the area of robust regression for sparse data.

There is a limited literature for this scenario. An approach by Alfons, Croux, & Gelper (2013)
combined the idea of LASSO (Tibshirani, 1996) and LTS (Rousseeuw & Leroy, 1987) to construct
a new method for sparse data. Concerning our method described in Section 1 the estimates in
Equation (2) can also be obtained by minimizing the function

(α̂, B̂
�

) = arg min
α,B

n∑
i=1

wi(yi − α − B�xi)�(yi − α − B�xi),

with appropriate weights wi for 1 ≤ i ≤ n; see pp. 387–389 of Johnson & Wichern (2007) for
a derivation of this least squares minimization problem. In Section 2 we described multivariate
least squares regression using depth as the weights.

For data with sparsity we now use LASSO as our method of regression instead of the usual
multivariate regression. LASSO allows us to carry out weighted regression, and like DWR-SPD
we continue to use SPD as the weights. In the sparse case one may re-formulate the minimization
problem by penalizing the matrix B to obtain

arg min
α,B

n∑
i=1

wi(yi − α − B�xi)�(yi − α − B�xi) + λ‖B‖l1 .

The constant λ > 0 controls the effect of the penalty; ‖B‖l1 = ∑
kl |bkl| is the l1 matrix norm

of B. For details on the formulation of multi-response sparse linear regression and some of its
variants see Li, Nan, & Zhu (2015) and Wang, Liang, & Xing (2015). The weights wi are calculated
based on SPD, and the weight functions are specified in Equation (3). This approach, which we
call LASSO-SPD, can be used directly for robust regression with sparse data. In fact we are not
restricted to a univariate response because LASSO has the necessary flexibility to model data
from multivariate responses. The LASSO with a multi-response Gaussian model allows such a fit
with a “group-lasso” penalty on the coefficients for each variable (Friedman, Hastie, & Tibshirani,
2010), or using the mixed co-ordinate descent algorithm (Li, Nan, & Zhu, 2015).

Following the re-weighting step in Section 3 applied to the data cloud of residual vectors we
carry out an additional step of the LASSO method after assigning weight 1 to the new observations
to increase the efficiency of our estimates, and call it RLASSO-SPD. The advantage provided by
our final estimator RLASSO-SPD is evident in the numerical study that we describe below.
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Table 3: Estimated mean squared errors (with corresponding estimated standard errors) of various robust
multivariate regression estimators of B̂ for sparse data.

Explanatory Estimation method
Response variable

type distribution LASSO-SPD RLASSO-SPD LASSO Sparse LTS

Gaussian 0.00081 0.00073b 0.00084 0.00066a

(0.00006) (0.00005) (0.00005) (0.00003)

Cauchy 0.00143 0.00136b 3.19593 0.00086a

Univariate (0.00010) (0.00009) (0.01773) (0.00005)

(q = 1) Gaussian + outliers 0.00080b 0.00076a 0.00082 0.00103

(0.00007) (0.00005) (0.00005) (0.00007)

Cauchy + outliers 0.00155 0.00151b 0.52499 0.00080a

(0.00012) (0.00011) (0.00716) (0.00007)

Gaussian 0.58797b 0.38068a 0.85954 –

(0.00304) (0.00608) (0.00633) –

Cauchy 0.81918b 0.69451a 4.08733 –

Bivariate (0.00577) (0.07108) (0.01901) –

(q = 2) Gaussian + outliers 0.68871b 0.68167a 0.71757 –

(0.00435) (0.00434) (0.00472) –

Cauchy + outliers 0.89229b 0.75397a 2.25875 –

(0.00636) (0.00512) (0.01322) –

aDenotes the smallest estimated MSE.
bThe second smallest value.

6.2. A Numerical Evaluation
The R code for sparse LTS and LASSO can be found in the packages robustHD (Alfons,
2014) and glmnet (Friedman, Hastie, & Tibshirani, 2010), respectively. In our implementa-
tion of sparse LTS and glmnet we fixed a grid of values from 0.05 to 0.50 with an incre-
ment of 0.05 for the regularization parameter λ. For each value of λ we obtained an estimate
of B. We then computed the MSE of this estimate over this sequence of values of λ, and
the minimum value of MSE observed is reported in Table 3. Each experiment was replicated
100 times.

Following Alfons, Croux, & Gelper (2013) we generated a high-dimensional data set
with 20 observations from a p-dimensional distribution with p = 1,000. Element (i, j) of the
variance–covariance matrix was 0.5|i−j|, which gave rise to correlated predictor variables. The
coefficient vector was made sparse by fixing the first 20 components to be 1, and the rest 0.
We generated the predictor variables from the multivariate standard Gaussian and Cauchy dis-
tributions with the above correlation structure. The response variable was generated according
to the assumed regression model, where the error terms followed a standard normal distribu-
tion with a standard deviation of 0.5. We then considered a second set of examples where
we added five “vertical outliers” at two locations, namely “10” and “−15,” which were the
p-dimensional constant vectors of 10’s and −15’s, respectively. For the case when q = 2 we
added a second coefficient vector by setting the last 20 components equal to 0, and all the rest
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to be 1. We also considered the same four examples described in this paragraph with a bivariate
response.

The values reported in Table 3 indicated that RLASSO-SPD is quite competitive with respect
to sparse LTS, and improves the classical LASSO. However the real advantage and usefulness
of our method appears when we use it for bivariate responses with outliers and heavy tails.
In the lower half of this table RLASSO-SPD outperformed the LASSO considerably, whereas
sparse LTS is not applicable to such data. In terms of computational time the average computing
time for LASSO and hence for RLASSO-SPD was about 1 s per iteration. The computation
was dominated by LASSO because SPD involved only the computation of averages of unit
vectors. This calculation was quite fast compared with sparse LTS, which took around 15–20 s per
iteration.

6.3. Choice of the Parameter λ

In practical data analysis a suitable value of the regularization parameter λ in the LASSO is
unknown. We chose to select λ by minimizing the estimated prediction error using the idea
of cross-validation (e.g., Hastie, Tibshirani, & Friedman, 2009). In the sparse setup n is quite
small compared to p and we used leave one out cross-validation (LOOCV). In LOOCV each
data point is left out once to fit the model and the left-out data point is used later as a test
observation for prediction. To prevent outliers from affecting the choice of λ a robust prediction
error is desirable (e.g., Cantoni & Ronchetti, 2001). For a given value of λ we obtained a set of n

prediction error vectors. We used the approach described in Section 3.1 to identify outliers in this
set of error vectors, and then computed the mean squared prediction error (MSPE) using only the
nonoutlier error vectors. In other words MSPE(λ) = |I|−1 ∑

i∈I e�
i ei, where I denotes the subset

of nonoutliers in the collection of prediction error vectors and |I| is the cardinality of the set I.
Finally we chose the value of λ that minimized MSPE(λ) to be the optimal one.

To illustrate this approach we analyzed a data set generated from the example with Gaussian
predictor variables discussed in Section 6.2 for the case when q = 2. We considered both cases
namely without and with outliers. For varying values ofλ the results of using our method RLASSO-
SPD over the grid of values from 0.05 to 1 with an increment of 0.05 are plotted in Figure 7. The
plot in the left panel of Figure 7 corresponds to the case when there are no outliers in the data set;
for the corresponding plot involving outliers, see the right panel. The optimum values of λ for
these two cases were 0.65 and 0.05, respectively.

Figure 7: Mean squared prediction error (MSPE), as a function of λ, for Gaussian data in the usual sparse
case (left panel), and the sparse case with outliers (right panel), respectively, for RLASSO-SPD.
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7. CONCLUSIONS

In this article we investigated a new method for robust multivariate regression based on data
depth and explored its related theoretical properties. In the numerical examples that we reported
in Sections 4–6 our proposed method yielded competitive results compared to alternative robust
methods of estimation. In addition we found our approach was quite stable computationally
because the estimator involved contributions from all the observations instead of just subsamples
from the data. By combining this approach with the LASSO our method can also be used to carry
out regressions for sparse data. Overall using this robust approach to estimation based on the
notion of data depth appears to be novel, and applicable to a large variety of data sets.
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APPENDIX

Proof of Proposition 1. As PD is affine invariant with PD(Azi + b) = PD(zi) for any nonsin-
gular (p + q) × (p + q) matrix A and b ∈ Rp+q we obtain

μ̂Az+b = Aμ̂Z + b and �̂Az+b = A�̂ZA�.

The affine equivariance of the depth-based location estimator μ̂Z and the scatter estimator �̂Z

imply the affine equivariance of the estimated regression coefficients B̂ and α̂ in TPD
n (z); see

Lemma A.1 in Rousseeuw et al. (2004). �

Proof of Proposition 2. We first prove the Fisher consistency of the estimates based on PD. As
both μ̂Z and �̂Z are affine equivariant, for a distribution H that is centrally symmetric about 0 we
have E(μ̂Z) = 0. This assertion follows by taking A to be −Ip+q and b = 0. Using a similar line
of argument and the fact that E[w2{δ(Z)}ZkZk

′ ] = 0 for k �= k
′

(which follows from the central
symmetry of Z) we have E(�̂Z) = κCov(Z) (see also Zuo & Cui, 2005).
From Zuo & Cui (2005) it follows that �̂Z is a consistent estimator of κ�Z. Using Fisher

consistency B̂ = �̂
−1
XX�̂XY

P→ (κ�XX)−1(κ�XY) = B as n → ∞. Using again the Fisher con-
sistency and the consistency of μ̂Z = (μ̂�

Y , μ̂X
�)� (Zuo, Cui, & Young, 2004) we obtain

α̂ = μ̂Y − B̂�μ̂X
P→ α as n → ∞. �

Proof of Proposition 3. First note that the BP of TPD
n (z) depends on the BP of μ̂Z and �̂Z

which are constructed using PD. Theorem 3.1 of Zuo, Cui, & Young (2004) gives the BP of μ̂Z
to be 1/2. This fact follows quite easily by combining the BP of the median and the MAD (both
of which have a BP of 1/2). On the other hand Theorem 3.7 of Zuo & Cui (2005) gives the BP of
�̂Z to be �(n − p − q + 1)/2	/n (by choosing k = p + q).
Let z∗

n denote the new data set obtained by replacing m observations (with m <

min{�(n − p − q + 1)/2	, �n/2	}) from the original data set zn by arbitrary values.
Note that ‖B̂(z∗

n)‖ = ‖�̂−1
XX(z∗

n)�XY(z∗
n)‖ ≤ ‖�̂−1

XX(z∗
n)‖‖�XY(z∗

n)‖. We have ‖�̂−1
XX(z∗

n)‖ =
λmin{�̂XX(z∗

n)}−1 and ‖�̂XY(z∗
n)‖ ≤ ‖�̂(z∗

n)‖ ≤ λmax(�̂(z∗
n)), where λmin and λmax are the mini-

mum and the maximum eigenvalues, respectively. Both values are bounded because �̂Z does not
break down for m < �(n − p − q + 1)/2	, and hence ‖B̂(z∗

n)‖ is bounded. Furthermore note that
‖α̂(z∗

n)‖ ≤ ‖μ̂Y(z∗
n)‖ + ‖B̂(z∗

n)‖‖μ̂X(z∗
n)‖, which is bounded because m is also assumed to be less

than �n/2	. The proof then follows easily by combining all these ideas. �
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Proof of Proposition 4. Recall the Fisher consistency of the estimates based on PD from
the proof of Proposition 2. Also IF (z; B̂, H) = IF (z; �̂XY, H), IF (z; α̂, H) = IF (z; μ̂Y, H),
and IF (z; �̂e, H) = IF (z; �̂YY, H). This follows from Lemma A.3 of Rousseeuw et al. (2004).
Assuming spherical symmetry of the joint distribution the expression for IF of μ̂Z is given in
Theorem 3.4 of Zuo, Cui, & Young (2004), and for �̂Z it is given in Corollary 3.2 of Zuo & Cui
(2005). Thus

IF (z; μ̂Z, H) = K0(z/‖z‖) + w1{(1 + ‖z‖)−1}z∫
w1{(1 + ‖u‖)−1} dH(u)

, and

IF (z; �̂Z, H) = t1(‖z‖)zz�/‖z‖2 + t2(‖z‖)Ip+q

c0
.

The expressions for IF in this result now follow from these expressions and using the partition
given in Equation (1). �

Lemma 1. Under the conditions specified in Proposition 3 the terms c0, K0, and the functions t1,
t2 are bounded.

Proof of Lemma 1. We first state related expressions and give conditions under which they are
bounded. Define U = Z/‖Z‖, where Z∼H , the spherical distribution function; m0 = MAD(Z1),
and p is the density of Z1. Without loss of generality we take m0 to be 1. We denote the first
derivative of the function wi by w

(1)
i for i = 1, 2. Then:

• s0(z) = 1/(1 + z), and 0 < s0(z) ≤ 1 for any z.
• si(z) = E{U2i−2

1 sign(|U1|z − m0)} is bounded as ‖U‖ ≤ 1 and |sign(u)| ≤ 1 for i = 1, 2. Here
sign(u) is the univariate sign function which equals −1, 0, or 1 according as u < 0, equal to
0 or exceeds 0, respectively.

• c0 = E[w2{s0(‖Z‖)}], and is bounded by virtue of the fact that 0 < s0(z) ≤ 1 and w2 is bounded
on the interval (0, 1).

• c1 = E[‖Z‖2w2{s0(‖Z‖)}]/{(p + q)c0}, and is bounded because w†(z) = z2w2{s0(z)} is
bounded as we now explain. Take v = c−1s0(z), and define

w†(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
vc

− 1
)2 1

vc2
exp{−k(1 − v4)4} − exp(−k)

1 − exp(−k)
, 0 < v < 1 ,

(
1
vc

− 1
)2 1

vc2 , 1 < v < 1/C .

The function w†(v) is continuous over the interval (0, 1/C]; however, it is of the form 0/0 at
v = 0. By L’Hôpital’s rule we can argue that w†(0) = 0, and hence w†(v) is bounded over the
range of v.

• c2 = E[‖Z‖s2
0(‖Z‖)w(1)

2 {s0(‖Z‖)}]/{4p(1)}, which is bounded because first, we have 0 <

zs0(z) = 1/(1/z + 1) ≤ 1. Moreover w
(1)
2 {s0(z)} is of the form 16k/{ct(1 − t4)} exp{−k(1 −

t4)4} for 0 < t < 1 and t = c−1s0(z), which is bounded in the unit interval.
• c3 = E[‖Z‖3s2

0(‖Z‖)w(1)
2 {s0(‖Z‖)}]/{4p(1)}, and is bounded by virtue of the fact that

zw
(1)
2 {s0(z)} = (16k/c2)(1 − ct)(1 − t4)3 exp{−k(1 − t4)4} ,

where t = c−1s0(z) for 0 < t < 1 is continuous in the bounded interval (0, 1); note also that
zs0(z) ≤ 1.
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Now we consider the quantities in the expressions for the IFs:

• c0 is defined above and has been shown to be bounded.
• K0 = 1/{2h(0)} ∫

Rd |x1|w(1)
1 {(1 + ‖x‖)−1}/(1 + ‖x‖)2 dH(x). Note that |x1|w(1)

1 {(1 +
‖x‖)−1} ≤ ‖x‖w(1)

1 {(1 + ‖x‖)−1}. Now

zw
(1)
1 {s0(z)} = 4k(1 − ct)(1 − t2) exp{−k(1 − t2)2}

c2t2 ,

where t = c−1s0(z) for 0 < t < 1 is clearly unbounded at t = 0. However the choice of k

is in our hands, and we can choose it appropriately to make this quantity arbitrarily close
to 0.

• t1(z) = c3{s2(z) − s2(z)−s1(z)
p+q−1 } + z2w2{s0(z)}. Recall that c3 is bounded, and we have argued

above that z2w2{s0(z)} is bounded.
• t2(z) = c3

s2(z)−s1(z)
p+q−1 − c1c2s1(z) − c1w2{s0(z)} is bounded in view of the facts stated

above. �
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